相关习题
 0  264885  264893  264899  264903  264909  264911  264915  264921  264923  264929  264935  264939  264941  264945  264951  264953  264959  264963  264965  264969  264971  264975  264977  264979  264980  264981  264983  264984  264985  264987  264989  264993  264995  264999  265001  265005  265011  265013  265019  265023  265025  265029  265035  265041  265043  265049  265053  265055  265061  265065  265071  265079  266669 

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,椭圆的参数方程为为参数),以原点为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为.

(1)求经过椭圆右焦点且与直线垂直的直线的极坐标方程;

(2)若为椭圆上任意-点,当点到直线距离最小时,求点的直角坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)当时,讨论极值点的个数;

2)若函数有两个零点,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线的焦点为轴上方的点在抛物线上,且,直线与抛物线交于两点(点不重合),设直线的斜率分别为.

(Ⅰ)求抛物线的方程;

(Ⅱ)当时,求证:直线恒过定点并求出该定点的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】为抗击新型冠状病毒,普及防护知识,某校开展了疫情防护网络知识竞赛活动.现从参加该活动的学生中随机抽取了100名学生,将他们的比赛成绩(满分为100分)分为6组:,得到如图所示的频率分布直方图.

1)求的值,并估计这100名学生的平均成绩(同一组中的数据用该组区间的中点值为代表);

2)在抽取的100名学生中,规定:比赛成绩不低于80分为优秀,比赛成绩低于80分为非优秀”.请将下面的2×2列联表补充完整,并判断是否有99%的把握认为比赛成绩是否优秀与性别有关

优秀

非优秀

合计

男生

40

女生

50

合计

100

参考公式及数据:.

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】已知动点到两点的距离之和为4,点轴上的射影是C.

1)求动点的轨迹方程;

2)过点的直线交点的轨迹于点,交点的轨迹于点,求的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱锥中,平面中点,中点,是线段上一动点.

1)当中点时,求证:平面平面

2)当∥平面时,求.

查看答案和解析>>

科目: 来源: 题型:

【题目】某单位为了更好地应对新型冠状病毒肺炎疫情,对单位的职工进行防疫知识培训,所有职工选择网络在线培训和线下培训中的一种方案进行培训.随机抽取了140人的培训成绩,统计发现样本中40个成绩来自线下培训职工,其余来自在线培训的职工,并得到如下统计图表:

1)写出线下培训茎叶图中成绩的中位数,估算在线培训直方图的中位数(保留一位小数);

2)得分90分及以上为成绩优秀,完成下边列联表,并判断是否有的把握认为成绩优秀与培训方式有关?

优秀

非优秀

合计

线下培训

在线培训

合计

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)试讨论函数的极值点的个数;

2)若,且恒成立,求a的最大值.

参考数据:

1.6

1.7

1.74

1.8

10

4.953

5.474

5.697

6.050

22026

0.470

0.531

0.554

0.588

2.303

查看答案和解析>>

科目: 来源: 题型:

【题目】北京地铁八通线西起四惠站,东至土桥站,全长18.964km,共设13座车站.目前八通线执行2014年12月28日制订的计价标准,各站间计程票价(单位:元)如下:

四惠

3

3

3

3

4

4

4

5

5

5

5

5

四惠东

3

3

3

4

4

4

5

5

5

5

5

高碑店

3

3

3

4

4

4

4

5

5

p>5

传媒大学

3

3

3

4

4

4

4

5

5

双桥

3

3

3

4

4

4

4

4

管庄

3

3

3

3

4

4

4

八里桥

3

3

3

3

4

4

通州北苑

3

3

3

3

3

果园

3

3

3

3

九棵树

3

3

3

梨园

/p>

3

3

临河里

3

土桥

四惠

四惠东

高碑店

传媒大学

双桥

管庄

八里桥

通州北苑

果园

九棵树

梨园

临河里

土桥

(Ⅰ)在13座车站中任选两个不同的车站,求两站间票价不足5元的概率;

(Ⅱ)甲乙二人从四惠站上车乘坐八通线,各自任选另一站下车(二人可同站下车),记甲乙二人乘车购票花费之和为X元,求X的分布列;

(Ⅲ)若甲乙二人只乘坐八通线,甲从四惠站上车,任选另一站下车,记票价为元;乙从土桥站上车,任选另一站下车,记票价为元.试比较的方差大小.(结论不需要证明)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,,且

(1)证明:平面

(2)在线段上,是否存在一点,使得二面角的大小为?如果存在,求的值;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案