相关习题
 0  264894  264902  264908  264912  264918  264920  264924  264930  264932  264938  264944  264948  264950  264954  264960  264962  264968  264972  264974  264978  264980  264984  264986  264988  264989  264990  264992  264993  264994  264996  264998  265002  265004  265008  265010  265014  265020  265022  265028  265032  265034  265038  265044  265050  265052  265058  265062  265064  265070  265074  265080  265088  266669 

科目: 来源: 题型:

【题目】已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)设点,直线与曲线交于两点,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】己知椭圆的离心率为分别是椭圈的左、右焦点,椭圆的焦点到双曲线渐近线的距离为.

(1)求椭圆的方程;

(2)直线与椭圆交于两点,以线段为直径的圆经过点,且原点到直线的距离为,求直线的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】年以来精准扶贫政策的落实,使我国扶贫工作有了新进展,贫困发生率由年底的下降到年底的,创造了人类减贫史上的的中国奇迹.“贫困发生率”是指低于贫困线的人口占全体人口的比例,年至年我国贫困发生率的数据如下表:

年份

2012

2013

2014

2015

2016

2017

2018

贫困发生率

10.2

8.5

7.2

5.7

4.5

3.1

1.4

(1)从表中所给的个贫困发生率数据中任选两个,求两个都低于的概率;

(2)设年份代码,利用线性回归方程,分析年至年贫困发生率与年份代码的相关情况,并预测年贫困发生率.

附:回归直线的斜率和截距的最小二乘估计公式分别为:

(的值保留到小数点后三位)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)设点,直线与曲线交于两点,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数.

(1),求的单调区间;

(2)若当恒成立,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,底面ABCD是菱形,PA=PD,∠DAB=60°.

(1)证明:ADPB.

(2)若PB=AB=PA=2,求三棱锥P-BCD的体积。

查看答案和解析>>

科目: 来源: 题型:

【题目】年以来精准扶贫政策的落实,使我国扶贫工作有了新进展,贫困发生率由年底的下降到年底的,创造了人类减贫史上的的中国奇迹.“贫困发生率”是指低于贫困线的人口占全体人口的比例,年至年我国贫困发生率的数据如下表:

年份

2012

2013

2014

2015

2016

2017

2018

贫困发生率

10.2

8.5

7.2

5.7

4.5

3.1

1.4

(1)从表中所给的个贫困发生率数据中任选两个,求两个都低于的概率;

(2)设年份代码,利用线性回归方程,分析年至年贫困发生率与年份代码的相关情况,并预测年贫困发生率.

附:回归直线的斜率和截距的最小二乘估计公式分别为:

(的值保留到小数点后三位)

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数,且),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.

1)写出曲线和直线的直角坐标方程;

2)若直线轴交点记为,与曲线交于两点,求.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)若函数存在两个极值点,求证:.

查看答案和解析>>

科目: 来源: 题型:

【题目】随着生活水平的提高和人们对健康生活的重视,越来越多的人加入到健身运动中.国家统计局数据显示,2019年有4亿国人经常参加体育锻炼.某健身房从参与健身的会员中随机抽取100人,对其每周参与健身的天数和2019年在该健身房所有消费金额(单位:元)进行统计,得到以下统计表及统计图:

平均每周健身天数

不大于2

34

不少于5

人数(男)

20

35

9

人数(女)

10

20

6

若某人平均每周进行健身天数不少于5,则称其为“健身达人”.该健身房规定消费金额不多于1600元的为普通会员,超过1600元但不超过3200元的为银牌会员,超过3200元的为金牌会员.

1)已知金牌会员都是健身达人,现从健身达人中随机抽取2人,求他们均是金牌会员的概率;

2)能否在犯错误的概率不超过的前提下认为性别和是否为“健身达人”有关系?

3)该健身机构在2019年年底针对这100位消费者举办一次消费返利活动,现有以下两种方案:

方案一:按分层抽样从普通会员、银牌会员和金牌会员中共抽取25位“幸运之星”,分别给予188元,288元,888元的幸运奖励;

方案二:每位会员均可参加摸奖游戏,游戏规则如下:摸奖箱中装有5张形状大小完全一样的卡片,其中3张印跑步机图案、2张印动感单车图案,有放回地摸三次卡片,每次只能摸一张,若摸到动感单车的总数为2,则获得100元奖励,若摸到动感单车的总数为3,则获得200元奖励,其他情况不给予奖励.规定每个普通会员只能参加1次摸奖游戏,每个银牌会员可参加2次摸奖游戏,每个金牌会员可参加3次摸奖游戏(每次摸奖结果相互独立).

请你比较该健身房采用哪一种方案时,在此次消费返利活动中的支出较少,并说明理由.

附:,其中为样本容量.

0.50

0.25

0.10

0.05

0.010

0.005

0.455

1.323

2.706

3.841

6.636

7.879

查看答案和解析>>

同步练习册答案