相关习题
 0  264904  264912  264918  264922  264928  264930  264934  264940  264942  264948  264954  264958  264960  264964  264970  264972  264978  264982  264984  264988  264990  264994  264996  264998  264999  265000  265002  265003  265004  265006  265008  265012  265014  265018  265020  265024  265030  265032  265038  265042  265044  265048  265054  265060  265062  265068  265072  265074  265080  265084  265090  265098  266669 

科目: 来源: 题型:

【题目】甲、乙两位同学各有张卡片,现以投掷一枚骰子的形式进行游戏,当掷出奇数点时.甲赢得乙卡片一张,当掷出偶数点时,乙赢得甲卡片一张.规定投掷的次数达到次,或在此之前某入赢得对方所有卡片时,游戏终止.

1)设表示游戏终止时投掷的次数,求的分布列及期望;

2)求在投掷次游戏才结束的条件下,甲、乙没有分出胜负的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,直线l的参数方程为(t为参数,0).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为

(Ⅰ)写出曲线C的直角坐标方程;

(Ⅱ)若直线l与曲线C交于A,B两点,且AB的长度为2,求直线l的普通方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆C的中心在坐标原点,焦点在x轴上,它的一个顶点恰好是抛物线的焦点,离心率为.

(Ⅰ)求椭圆C的标准方程;

(Ⅱ)过椭圆C的右焦点F作直线l交椭圆CAB两点,交y轴于M点,若,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图在矩形ABCD中,AB5AD2,点E在线段AB上,且BE1,将ADE沿DE折起到A1DE的位置,使得平面A1DE⊥平面BCDE

1)求证:CE⊥平面A1DE

2)线段A1C上是否存在一点F,使得BF//平面A1DE?说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】执行如图所示的程序框图,若将判断框内“”改为关于的不等式“”且要求输出的结果不变,则正整数的取值是

A. 4 B. 5 C. 6 D. 7

查看答案和解析>>

科目: 来源: 题型:

【题目】已知在平面直角坐标系内,曲线的参数方程为为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为

1)把曲线和直线化为直角坐标方程;

2)过原点引一条射线分别交曲线和直线两点,射线上另有一点满足,求点的轨迹方程(写成直角坐标形式的普通方程).

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

1)当时,求的最小值;

2)若函数上存在极值点,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆,点均在椭圆上,,点与点关于原点对称,的最大值为

1)求椭圆的标准方程;

2)若,求外接圆的半径的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】2019121日起郑州市施行《郑州市城市生活垃圾分类管理办法》,郑州将正式进入城市生活垃圾分类时代.为了增强社区居民对垃圾分类知识的了解,积极参与到垃圾分类的行动中,某社区采用线下和线上相结合的方式开展了一次200名辖区成员参加的垃圾分类有关知识专题培训.为了了解参训成员对于线上培训、线下培训的满意程度,社区居委会随机选取了40名辖区成员,将他们分成两组,每组20人,分别对线上、线下两种培训进行满意度测评,根据辖区成员的评分(满分100分)绘制了如图所示的茎叶图.

1)根据茎叶图判断辖区成员对于线上、线下哪种培训的满意度更高,并说明理由.

2)求这40名辖区成员满意度评分的中位数,并将评分不超过、超过分别视为基本满意”“非常满意两个等级.

)利用样本估计总体的思想,估算本次培训共有多少辖区成员对线上培训非常满意;

)根据茎叶图填写下面的列联表.

基本满意

非常满意

总计

线上培训

线下培训

总计

并根据列联表判断能否有995%的把握认为辖区成员对两种培训方式的满意度有差异?

附:

0010

0005

0001

6635

7879

10828

,其中

查看答案和解析>>

同步练习册答案