科目: 来源: 题型:
【题目】已知曲线的参数方程为(为参数),在同一平面直角坐标系中,将曲线上的点按坐标变换得到曲线,以原点为极点,轴的正半轴为极轴,建立极坐标系.设点的极坐标为.
(1)求曲线的极坐标方程;
(2)若过点且倾斜角为的直线与曲线交于两点,求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某地有种特产水果很受当地老百姓欢迎,但该种水果只能在9月份销售,且该种水果只能当天食用口感最好,隔天食用口感较差。某超市每年9月份都销售该特产水果,每天计划进货量相同,进货成本每公斤8元,销售价每公斤12元;当天未卖出的水果则转卖给水果罐头厂,但每公斤只能卖到5元。根据往年销售经验,每天需求量与当地气温范围有一定关系。如果气温不低于30度,需求量为5000公斤;如果气温位于,需求量为3500公斤;如果气温低于25度,需求量为2000公斤;为了制定今年9月份订购计划,统计了前三年9月份的气温范围数据,得下面的频数分布表
气温范围 | |||||
天数 | 4 | 14 | 36 | 21 | 15 |
以气温范围位于各区间的频率代替气温范围位于该区间的概率.
(1)求今年9月份这种水果一天需求量(单位:公斤)的分布列和数学期望;
(2)设9月份一天销售特产水果的利润为(单位:元),当9月份这种水果一天的进货量为(单位:公斤)为多少时,的数学期望达到最大值,最大值为多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的离心率,且经过点,,,,为椭圆的四个顶点(如图),直线过右顶点且垂直于轴.
(1)求该椭圆的标准方程;
(2)为上一点(轴上方),直线,分别交椭圆于,两点,若,求点的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知曲线,相邻对称轴之间的距离为,且函数在处取得最大值,则下列命题正确的是( )
①当时,的取值范围是;
②将的图象向左平移个单位后所对应的函数为偶函数;
③函数的最小正周期为;
④函数在区间上有且仅有一个零点.
A.①②B.①③C.①③④D.②④
查看答案和解析>>
科目: 来源: 题型:
【题目】某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图和90后从事互联网行业者岗位分布图(90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生),则下列结论中不一定正确的是( )
整个互联网行业从业者年龄分布饼状图 90后从事互联网行业者岗位分布图
A.互联网行业从业人员中90后占一半以上
B.互联网行业中从事技术岗位的人数90后比80后多
C.互联网行业中从事设计岗位的人数90后比80前多
D.互联网行业中从事市场岗位的90后人数不足总人数的10%
查看答案和解析>>
科目: 来源: 题型:
【题目】正方体的棱长为,动点在对角线上,过点作垂直于的平面,记平面截正方体得到的截面多边形(含三角形)的周长为,设,.
(1)下列说法中,正确的编号为______.
①截面多边形可能为六边形;②;③函数的图象关于对称.
(2)当时,三棱锥的外接球的表面积为______.
查看答案和解析>>
科目: 来源: 题型:
【题目】某百货公司1~6月份的销售量与利润的统计数据如表:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
销售量x/万件 | 10 | 11 | 13 | 12 | 8 | 6 |
利润y/万元 | 22 | 25 | 29 | 26 | 16 | 12 |
(1)根据2~5月份的统计数据,求出y关于x的回归直线方程x+;
(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差均不超过2万元,则认为得到的回归直线方程是理想的,试问所得回归直线方程是否理想?
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为,若曲线与曲线关于直线对称.
(1)求曲线的直角坐标方程;
(2)在以为极点,轴的正半轴为极轴的极坐标系中,射线与的异于极点的交点为,与的异于极点的交点为,求.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知椭圆:的离心率为,长轴长为4,、分别是椭圆的左、右顶点,过右焦点且斜率为的直线与椭圆相交于,两点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)记、的面积分別为、,若,求的值;
(Ⅲ)设线段的中点为,直线与直线相交于点,记直线、、的斜率分别为、、,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com