相关习题
 0  264925  264933  264939  264943  264949  264951  264955  264961  264963  264969  264975  264979  264981  264985  264991  264993  264999  265003  265005  265009  265011  265015  265017  265019  265020  265021  265023  265024  265025  265027  265029  265033  265035  265039  265041  265045  265051  265053  265059  265063  265065  265069  265075  265081  265083  265089  265093  265095  265101  265105  265111  265119  266669 

科目: 来源: 题型:

【题目】某省2020年高考将实施新的高考改革方案.考生的高考总成绩由3门统一高考科目成绩和自主选择的3门普通高中学业水平等级考试科目成绩组成,总分为750分.其中,统一高考科目为语文、数学、外语,自主选择的3门普通高中学业水平等级考试科目是从物理、化学、生物、政治、历史、地理6科中选择3门作为选考科目,语文、数学、外语三科各占150分,选考科目成绩采用赋分制,即原始分数不直接用,而是按照学生分数在本科目考试的排名来划分等级并以此打分得到最后得分.根据高考综合改革方案,将每门等级考试科目中考生的原始成绩从高到低分为8个等级.参照正态分布原则,确定各等级人数所占比例分别为3%7%16%24%24%16%7%3%.等级考试科目成绩计入考生总成绩时,将等级内的考生原始成绩,依照等比例转换法则,分别转换到911008190718061705160415031402130八个分数区间,得到考生的等级成绩.举例说明:某同学化学学科原始分为65分,该学科等级的原始分分布区间为5869,则该同学化学学科的原始成绩属等级.而等级的转换分区间为6170,那么该同学化学学科的转换分计算方法为:设该同学化学学科的转换等级分为,求得.四舍五入后该同学化学学科赋分成绩为67.为给高一学生合理选科提供依据,全省对六个选考科目进行测试,某校高一年级2000人,根据该校高一学生的物理原始成绩制成频率分布直方图(见右图).由频率分布直方图,可以认为该校高一学生的物理原始成绩服从正态分布,用这2000名学生的平均物理成绩作为的估计值,用这2000名学生的物理成绩的方差作为的估计值.

1)若张明同学在这次考试中的物理原始分为86分,等级为,其所在原始分分布区间为8293,求张明转换后的物理成绩(精确到1);按高考改革方案,若从全省考生中随机抽取100人,记表示这100人中等级成绩在区间内的人数,求最有可能的取值(概率最大);

2)①求(同一组中的数据用该组区间的中点作代表);

②由①中的数据,记该校高一学生的物理原始分高于84分的人数为,求

附:若,则

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,侧棱与底面垂直的四棱柱的底面是平行四边形,

1)求证:∥平面

2)若,求与平面所成角的大小.

查看答案和解析>>

科目: 来源: 题型:

【题目】在①的等差中项;②的等比中项;③数列的前5项和为65这三个条件中任选一个,补充在横线中,并解答下面的问题.

已知是公差为2的等差数列,其前项和为________________________

1)求

2)设,是否存在,使得?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】20135月,华人数学家张益唐的论文《素数间的有界距离》在《数学年刊》上发表,破解了困扰数学界长达一个多世纪的难题,证明了孪生素数猜想的弱化形式,即发现存在无穷多差小于7000万的素数对.这是第一次有人证明存在无穷多组间距小于定值的素数对.孪生素数猜想是希尔伯特在1900年提出的23个问题中的第8个,可以这样描述:存在无穷多个素数,使得是素数,素数对称为孪生素数.在不超过16的素数中任意取出不同的两个,则可组成孪生素数的概率为(

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在直三棱柱中,已知.是线段的中点.

1)求直线与平面所成角的正弦值;

2)求二面角的大小的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

(1)当时,

①若曲线与直线相切,求c的值;

②若曲线与直线有公共点,求c的取值范围.

(2)当时,不等式对于任意正实数x恒成立,当c取得最大值时,求ab的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知数列的首项,其前项和为,设.

1)若,且数列是公差为的等差数列,求

2)设数列的前项和为,满足.

①求数列的通项公式;

②若对,且,不等式恒成立,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,点分别为椭圆的左右顶点和右焦点,过点的直线交椭圆于点.

1)若,点与椭圆左准线的距离为,求椭圆的方程;

2)已知直线的斜率是直线斜率的倍.

①求椭圆的离心率;

②若椭圆的焦距为,求面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】有一块以点为圆心,半径为百米的圆形草坪,草坪内距离百米的点有一用于灌溉的水笼头,现准备过点修一条笔直小路交草坪圆周于两点,为了方便居民散步,同时修建小路,其中小路的宽度忽略不计.

1)若要使修建的小路的费用最省,试求小路的最短长度;

2)若要在区域内(含边界)规划出一块圆形的场地用于老年人跳广场舞,试求这块圆形广场的最大面积.(结果保留根号和)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,函数.

(Ⅰ)判断函数的单调性;

(Ⅱ)若时,对任意,不等式恒成立,求实数的最小值.

查看答案和解析>>

同步练习册答案