相关习题
 0  264932  264940  264946  264950  264956  264958  264962  264968  264970  264976  264982  264986  264988  264992  264998  265000  265006  265010  265012  265016  265018  265022  265024  265026  265027  265028  265030  265031  265032  265034  265036  265040  265042  265046  265048  265052  265058  265060  265066  265070  265072  265076  265082  265088  265090  265096  265100  265102  265108  265112  265118  265126  266669 

科目: 来源: 题型:

【题目】已知函数.

1)当时,若,求的取值范围;

2)若定义在上奇函数满足,且当时,,求上的解析式;

3)对于(2)中的,若关于的不等式上恒成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知二次函数满足,且.

(1)求的解析式;

(2)当时,不等式有解,求实数的取值范围;

(3)设,求的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】下列说法正确的是(

A.命题,则的否命题是,则

B.命题ABC中,若AB,则sinAsinB的逆命题为假命题.

C.的必要不充分条件

D.pq为真命题,则pq至少有一个为真命题

查看答案和解析>>

科目: 来源: 题型:

【题目】中国古代数学经典《数书九章》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称为阳马,将四个面都为直角三角形的四面体称之为鳖臑”.在如图所示的阳马中,底面ABCD是矩形.平面,以的中点O为球心,AC为直径的球面交PDM(异于点D),交PCN(异于点C.

1)证明:平面,并判断四面体MCDA是否是鳖臑,若是,写出它每个面的直角(只需写出结论);若不是,请说明理由;

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,以原点为极点,轴非负半轴为极轴,长度单位相同,建立极坐标系,曲线的极坐标方程为,直线过点倾斜角为.

1)将曲线的极坐标方程化为直角坐标方程,并写出直线的参数方程;

2)当时,直线交曲线两点,求.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数为自然对数的底数),且在点处的切线的斜率为,函数.

1)求的单调区间和极值;

2)若,求的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,经过左焦点的最短弦长为3,离心率为

1)求椭圆的标准方程;

2)过的直线与轴正半轴交于点,与椭圆交于点轴,过的另一直线与椭圆交于两点,若,求直线的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知四棱锥的底面是菱形,平面与平面所成的角为,点的中点.

1)求证:平面平面

2)求二面角的正切值.

查看答案和解析>>

科目: 来源: 题型:

【题目】2020年春季受新冠肺炎疫情的影响,利用网络软件办公与学习成为了一种新的生活方式,网上办公软件的开发与使用成为了一个热门话题.为了解钉钉软件的使用情况,钉钉公司借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到下表(单位:人):

经常使用

偶尔或不用

合计

35岁及以下

70

30

100

35岁以上

60

40

100

合计

130

70

200

1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为钉钉软件的使用情况与年龄有关?

2)现从所抽取的35岁以上的网友中利用分层抽样的方法再抽取5.从这5人中,再随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用钉钉软件的概率.

参考公式:,其中.

参考数据:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目: 来源: 题型:

【题目】在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志是连续10日,每天新增疑似病例不超过7”.已知过去10日,三地新增疑似病例数据信息如下:

地:总体平均数为3,中位数为4

地:总体平均数为2,总体方差为3

地:总体平均数为1,总体方差大于0

三地中,一定没有发生大规模群体感染的是__________.

查看答案和解析>>

同步练习册答案