科目: 来源: 题型:
【题目】在某外国语学校举行的(高中生数学建模大赛)中,参与大赛的女生与男生人数之比为,且成绩分布在,分数在以上(含)的同学获奖.按女生、男生用分层抽样的方法抽取人的成绩作为样本,得到成绩的频率分布直方图如图所示.
(Ⅰ)求的值,并计算所抽取样本的平均值(同一组中的数据用该组区间的中点值作代表);
(Ⅱ)填写下面的列联表,并判断在犯错误的概率不超过的前提下能否认为“获奖与女生、男生有关”.
女生 | 男生 | 总计 | |
获奖 | |||
不获奖 | |||
总计 | |||
附表及公式:
其中,.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,正方体的棱长为1,线段上有两个动点,且,现有如下四个结论:
;平面;
三棱锥的体积为定值;异面直线所成的角为定值,
其中正确结论的序号是______.
查看答案和解析>>
科目: 来源: 题型:
【题目】某厂加工的零件按箱出厂,每箱有10个零件,在出厂之前需要对每箱的零件作检验,人工检验方法如下:先从每箱的零件中随机抽取4个零件,若抽取的零件都是正品或都是次品,则停止检验;若抽取的零件至少有1个至多有3个次品,则对剩下的6个零件逐一检验.已知每个零件检验合格的概率为0.8,每个零件是否检验合格相互独立,且每个零件的人工检验费为2元.
(1)设1箱零件人工检验总费用为元,求的分布列;
(2)除了人工检验方法外还有机器检验方法,机器检验需要对每箱的每个零件作检验,每个零件的检验费为1.6元.现有1000箱零件需要检验,以检验总费用的数学期望为依据,在人工检验与机器检验中,应该选择哪一个?说明你的理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】2020年寒假期间新冠肺炎肆虐,全国人民众志成城抗击疫情.某市要求全体市民在家隔离,同时决定全市所有学校推迟开学.某区教育局为了让学生“停课不停学”,要求学校各科老师每天在网上授课,每天共280分钟,请学生自主学习.区教育局为了了解高三学生网上学习情况,上课几天后在全区高三学生中采取随机抽样的方法抽取了100名学生进行问卷调查,为了方便表述把学习时间在分钟的学生称为类,把学习时间在分钟的学生称为类,把学习时间在分钟的学生称为类,随机调查的100名学生学习时间的人数频率分布直方图如图所示:以频率估计概率回答下列问题:
(1)求100名学生中,,三类学生分别有多少人?
(2)在,,三类学生中,按分层抽样的方法从上述100个学生中抽取10人,并在这10人中任意邀请3人电话访谈,求邀请的3人中是类的学生人数的分布列和数学期望;
(3)某校高三(1)班有50名学生,某天语文和数学老师计划分别在19:00—19:40和20:00—20:40在线上与学生交流,由于受校园网络平台的限制,每次只能30个人同时在线学习交流.假设这两个时间段高三(1)班都有30名学生相互独立地随机登录参加学习交流.设表示参加语文或数学学习交流的人数,当为多少时,其概率最大.
查看答案和解析>>
科目: 来源: 题型:
【题目】设以的边为长轴且过点的椭圆的方程为椭圆的离心率,面积的最大值为,和所在的直线分别与直线相交于点,.
(1)求椭圆的方程;
(2)设与的外接圆的面积分别为,,求的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,在三棱柱中,侧面为菱形,,,侧面为正方形,平面平面.点为线段的中点,点在线段上,且.
(1)证明:平面平面;
(2)求直线与平面所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com