科目: 来源: 题型:
【题目】如图,已知矩形ABCD,,,AF⊥平面ABC,且.E为线段DC上一点,沿直线AE将△ADE翻折成,M为的中点,则三棱锥体积的最小值是________.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数在点处的切线方程为.
(1)求,;
(2)函数图像与轴负半轴的交点为,且在点处的切线方程为,函数,,求的最小值;
(3)关于的方程有两个实数根,,且,证明:.
查看答案和解析>>
科目: 来源: 题型:
【题目】每年的3月12日是植树节,某公司为了动员职工积极参加植树造林,在植树节期间开展植树有奖活动,设有甲、乙两个摸奖箱,每位植树者植树每满30棵获得一次甲箱内摸奖机会,植树每满50棵获得一次乙箱内摸奖机会,每箱内各有10个球(这些球除颜色外全相同),甲箱内有红、黄、黑三种颜色的球,其中个红球,个黄球,5个黑球,乙箱内有4个红球和6个黄球,每次摸一个球后放回原箱,摸得红球奖100元,黄球奖50元,摸得黑球则没有奖金.
(1)经统计,每人的植树棵数服从正态分布,若其中有200位植树者参与了抽奖,请估计植树的棵数在区间内并中奖的人数(结果四舍五入取整数);
附:若,则,
.
(2)若,某位植树者获得两次甲箱内摸奖机会,求中奖金额(单位:元)的分布列;
(3)某人植树100棵,有两种摸奖方法,
方法一:三次甲箱内摸奖机会;
方法二:两次乙箱内摸奖机会;
请问:这位植树者选哪一种方法所得奖金的期望值较大.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,,以为圆心过椭圆左顶点的圆与直线相切于,且满足.
(1)求椭圆的标准方程;
(2)过椭圆右焦点的直线与椭圆交于不同的两点,,问内切圆面积是否有最大值?若有,求出最大值;若没有,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】在①,②,③这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列的公差,前项和为,若_______,数列满足,,.
(1)求的通项公式;
(2)求的前项和.
查看答案和解析>>
科目: 来源: 题型:
【题目】若点在平面外,过点作面的垂线,则称垂足为点在平面内的正投影,记为.如图,在棱长为的正方体中,记平面为,平面为,点是棱上一动点(与不重合),,.给出下列三个结论:①线段长度的取值范围是;②存在点使得平面;③存在点使得.其中正确结论的序号是_______.
查看答案和解析>>
科目: 来源: 题型:
【题目】南北朝时代的伟大数学家祖暅在数学上有突出贡献,他在实践的基础上提出祖暅原理:“幂势既同,则积不容异”.其含义是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等,如图,夹在两个平行平面之间的两个几何体的体积分别为,被平行于这两个平面的任意平面截得的两个截面的面积分别为,则“总相等”是“相等”的( )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件
查看答案和解析>>
科目: 来源: 题型:
【题目】已知双曲线,不与轴垂直的直线与双曲线右支交于点,,(在轴上方,在轴下方),与双曲线渐近线交于点,(在轴上方),为坐标原点,下列选项中正确的为( )
A.恒成立
B.若,则
C.面积的最小值为1
D.对每一个确定的,若,则的面积为定值
查看答案和解析>>
科目: 来源: 题型:
【题目】为了解运动健身减肥的效果,某健身房调查了20名肥胖者,测量了他们的体重(单位:千克).健身之前他们的体重情况如三维饼图(1)所示,经过半年的健身后,他们的体重情况如三维饼图(2)所示,对比健身前后,关于这20名肥胖者,下面结论正确的是( )
A.他们健身后,体重在区间内的人数不变
B.他们健身后,体重在区间内的人数减少了2个
C.他们健身后,体重在区间内的肥胖者体重都有减轻
D.他们健身后,这20位肥胖着的体重的中位数位于区间
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com