相关习题
 0  264950  264958  264964  264968  264974  264976  264980  264986  264988  264994  265000  265004  265006  265010  265016  265018  265024  265028  265030  265034  265036  265040  265042  265044  265045  265046  265048  265049  265050  265052  265054  265058  265060  265064  265066  265070  265076  265078  265084  265088  265090  265094  265100  265106  265108  265114  265118  265120  265126  265130  265136  265144  266669 

科目: 来源: 题型:

【题目】某蔬菜批发商经销某种新鲜蔬菜(以下简称A蔬菜),购入价为200/袋,并以300/袋的价格售出,若前8小时内所购进的A蔬菜没有售完,则批发商将没售完的A蔬菜以150/袋的价格低价处理完毕(根据经验,2小时内完全能够把A蔬菜低价处理完,且当天不再购进).该蔬菜批发商根据往年的销量,统计了100A蔬菜在每天的前8小时内的销售量,制成如下频数分布条形图.

1)若某天该蔬菜批发商共购入6A蔬菜,有4A蔬菜在前8小时内分别被4名顾客购买,剩下2袋在8小时后被另2名顾客购买.现从这6名顾客中随机选2人进行服务回访,则至少选中1人是以150/袋的价格购买的概率是多少?

2)若今年A蔬菜上市的100天内,该蔬菜批发商每天都购进A蔬菜5袋或者每天都购进A蔬菜6袋,估计这100天的平均利润,以此作为决策依据,该蔬菜批发商应选择哪一种A蔬菜的进货方案?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

1)求函数的单调区间;

2)若函数是自然对数的底数)恰有一个零点,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,过点的直线与椭圆相交于两点.

1)当直线的斜率时,求的面积;

2)当时,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,已知底面是边长为2的菱形,平面分别是棱的中点.

1)求证:平面

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】1是某高架桥箱梁的横截面,它由上部路面和下部支撑箱两部分组成.如图2,路面宽度,下部支撑箱CDEF为等腰梯形(),且.为了保证承重能力与稳定性,需下部支撑箱的面积为,高度为2m,若路面AB侧边CFDE底部EF的造价分别为4a千元/m5a千元/m6a千元/ma为正常数),

1)试用θ表示箱梁的总造价y(千元);

2)试确定cosθ的值,使总造价最低?并求最低总造价.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知为椭圆的上顶点,P为椭圆E上异于上、下顶点的一个动点.当点P的横坐标为时,

1)求椭圆E的标准方程;

2)设Mx轴的正半轴上的一个动点.

①若点P在第一象限内,且以AP为直径的圆恰好与x轴相切于点M,求AP的长.

②若,是否存在点N,满足,且AN的中点恰好在椭圆E上?若存在,求点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,其中e为自然对数的底数.

1)若函数的图象在点处的切线方程为,求实数a的值;

2)若函数2个不同的零点

①求实数a的取值范围;

②求证:

查看答案和解析>>

科目: 来源: 题型:

【题目】对于给定的数列,设,即,…,中的最大值,则称数列是数列的“和谐数列”.

1)设,求的值,并证明数列是等差数列;

2)设数列都是公比为q的正项等比数列,若数列是等差数列,求公比q的取值范围;

3)设数列满足,数列是数列的“和谐数列”,且m为常数,2,…,k),求证:

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱锥P-ABC中,底面ABCDE分别为棱BCPC的中点,点F在棱PA上,设

1)当时,求异面直线DFBE所成角的余弦值;

2)试确定t的值,使二面角C-EF-D的平面角的余弦值为

查看答案和解析>>

科目: 来源: 题型:

【题目】在我国南宋数学家杨辉所著的《详解九章算法》一书中,用如图所示的三角形(杨辉三角)解释了二项和的乘方规律.右边的数字三角形可以看作当n依次取0123,…时展开式的二项式系数,相邻两斜线间各数的和组成数列.例:,….

1)写出数列的通项公式(结果用组合数表示),无需证明;

2)猜想,与的大小关系,并用数学归纳法证明.

查看答案和解析>>

同步练习册答案