科目: 来源: 题型:
【题目】某班级共有50名同学(男女各占一半),为弘扬传统文化,班委组织了“古诗词男女对抗赛”,将同学随机分成25组,每组男女同学各一名,每名同学均回答同样的五个不同问题,答对一题得一分,答错或不答得零分,总分5分为满分.最后25组同学得分如下表:
组别号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
男同学得分 | 5 | 4 | 5 | 5 | 4 | 5 | 5 | 4 | 4 | 4 | 5 | 5 | 4 |
女同学得分 | 4 | 3 | 4 | 5 | 5 | 5 | 4 | 5 | 5 | 5 | 5 | 3 | 5 |
分差 | 1 | 1 | 1 | 0 | -1 | 0 | 1 | -1 | -1 | -1 | 0 | 2 | -1 |
组别号 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | |
男同学得分 | 4 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 4 | 3 | 3 | |
女同学得分 | 5 | 3 | 4 | 5 | 4 | 3 | 5 | 5 | 3 | 4 | 5 | 5 | |
分差 | -1 | 0 | 0 | -1 | 0 | 1 | 0 | 0 | 2 | 0 | -2 | -2 |
(I)完成列联表,并判断是否有90%的把握认为“该次对抗赛是否得满分”与“同学性别”有关;
(Ⅱ)某课题研究小组假设各组男女同学分差服从正态分布,首先根据前20组男女同学的分差确定和,然后根据后面5组同学的分差来检验模型,检验方法是:记后面5组男女同学分差与的差的绝对值分别为,若出现下列两种情况之一,则不接受该模型,否则接受该模型.①存在;②记满足的i的个数为k,在服从正态分布的总体(个体数无穷大)中任意取5个个体,其中落在区间内的个体数大于或等于k的概率为P,.
试问该课题研究小组是否会接受该模型.
0.10 | 0.05 | 0.010 | |
2.706 | 3.841 | 6.635 |
参考公式和数据:
,;若,有,.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知双曲线上任意一点(异于顶点)与双曲线两顶点连线的斜率之积为.
(I)求双曲线渐近线的方程;
(Ⅱ)过椭圆上任意一点P(P不在C的渐近线上)分别作平行于双曲线两条渐近线的直线,交两渐近线于两点,且,是否存在使得该椭圆的离心率为,若存在,求出椭圆方程:若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知等差数列的公差为,前n项和为,且满足____________.(从①);②成等比数列;③,这三个条件中任选两个补充到题干中的横线位置,并根据你的选择解决问题)
(I)求;
(Ⅱ)若,求数列的前n项和.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知正四棱锥中,是边长为3的等边三角形,点M是的重心,过点M作与平面PAC垂直的平面,平面与截面PAC交线段的长度为2,则平面与正四棱椎表面交线所围成的封闭图形的面积可能为______________.(请将可能的结果序号填到横线上)①2;②;③3; ④.
查看答案和解析>>
科目: 来源: 题型:
【题目】春秋以前中国已有“抱瓮而出灌”的原始提灌方式,使用提水吊杆——桔槔,后发展成辘轳.19世纪末,由于电动机的发明,离心泵得到了广泛应用,为发展机械提水灌溉提供了条件.图形如图所示为灌溉抽水管道在等高图的上垂直投影,在A处测得B处的仰角为37度,在A处测得C处的仰角为45度,在B处测得C处的仰角为53度,A点所在等高线值为20米,若BC管道长为50米,则B点所在等高线值为( )(参考数据)
A.30米B.50米C.60米D.70米
查看答案和解析>>
科目: 来源: 题型:
【题目】平面直角坐标系xOy中,抛物线E顶点在坐标原点,焦点为.以坐标原点为极点,x轴非负半轴为极轴建立极坐标系.
(Ⅰ)求抛物线E的极坐标方程;
(Ⅱ)过点倾斜角为的直线l交E于M,N两点,若,求.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆,过点的两条不同的直线与椭圆E分别相交于A,B和C,D四点,其中A为椭圆E的右顶点.
(1)求以AB为直径的圆的方程;
(2)设以AB为直径的圆和以CD为直径的圆相交于M,N两点,探究直线MN是否经过定点,若经过定点,求出定点坐标;若不经过定点,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知等差数列的公差为,前n项和为,且满足____________.(从①);②成等比数列;③,这三个条件中任选两个补充到题干中的横线位置,并根据你的选择解决问题)
(I)求;
(Ⅱ)若,求数列的前n项和.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com