相关习题
 0  265015  265023  265029  265033  265039  265041  265045  265051  265053  265059  265065  265069  265071  265075  265081  265083  265089  265093  265095  265099  265101  265105  265107  265109  265110  265111  265113  265114  265115  265117  265119  265123  265125  265129  265131  265135  265141  265143  265149  265153  265155  265159  265165  265171  265173  265179  265183  265185  265191  265195  265201  265209  266669 

科目: 来源: 题型:

【题目】已知椭圆的标准方程是,设是椭圆的左焦点,为直线上任意一点,过的垂线交椭圆于点.

1)证明:线段平分线段(其中为坐标原点);

2)当最小时,求点的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】港珠澳大桥是一座具有划时代意义的大桥.它连通了珠海、香港、澳门三地,大大缩短了三地的时空距离,盘活了珠江三角洲的经济,被誉为新的世界七大奇迹.截至201910238点,珠海公路口岸共验放出入境旅客超过1400万人次,日均客流量已经达到4万人次,验放出入境车辆超过70万辆次,2019年春节期间,客流再次大幅增长,日均客流达8万人次,单日客流量更是创下11.3万人次的最高纪录.2019年从五月一日开始的连续100天客流量频率分布直方图如图.

1)求这100天中,客流量超过4万的频率;

2)①同一组数据用该区间的中点值代替,根据频率分布直方图.估计客流量的平均数.

②求客流量的中位数.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知双曲线的两顶点分别为为双曲线的一个焦点,为虚轴的一个端点,若在线段(不含端点)上存在两点,使得,则双曲线的渐近线斜率的平方的取值范围是( )

A.B.

C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数,),在极坐标系(与平面直角坐标系取相同的单位长度,以坐标原点为极点,轴正半轴为极轴)中,曲线的极坐标方程为.

1)若可,试判断曲线的位置关系;

2)若曲线交于点两点,且,满足.的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的标准方程是,设是椭圆的左焦点,为直线上任意一点,过的垂线交椭圆于点.

1)证明:线段平分线段(其中为坐标原点);

2)当最小时,求点的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四棱柱中,平面为棱的中点

1)证明:

2)设点在线段上,且直线与平面所成角的正弦值为,求线段的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】港珠澳大桥是一座具有划时代意义的大桥.它连通了珠海香港澳门三地,大大缩短了三地的时空距离,盘活了珠江三角洲的经济,被誉为新的世界七大奇迹.截至201910238点,珠海公路口岸共验放出入境旅客超过1400万人次,日均客流量已经达到4万人次,验放出入境车辆超过70万辆次,2019年春节期间,客流再次大幅增长,日均客流达8万人次,单日客流量更是创下11.3万人次的最高纪录.

2019年从五月一日开始的连续100天客流量频率分布直方图如下

1)①同一组数据用该区间的中点值代替,根据频率分布直方图.估计客流量的平均数.

②求客流量的中位数.

2)设这100天中客流量超过5万人次的有天,从这天中任取两天,设为这两天中客流量超过7万人的天数.的分布列和期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的离心率为,若椭圆的长轴长等于的直径,且成等差数列

(Ⅰ)求椭圆的方程;

(Ⅱ)设是椭圆上不同的两点,线段的垂直平分线轴于点,试求点的横坐标的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知两个函数

(Ⅰ)当时,求在区间上的最大值;

(Ⅱ)求证:对任意,不等式都成立.

查看答案和解析>>

科目: 来源: 题型:

【题目】在全面抗击新冠肺炎疫情这一特殊时期,我市教育局提出“停课不停学”的口号,鼓励学生线上学习.某校数学教师为了调查高三学生数学成绩与线上学习时间之间的相关关系,对高三年级随机选取45名学生进行跟踪问卷,其中每周线上学习数学时间不少于5小时的有19人,余下的人中,在检测考试中数学平均成绩不足120分的占,统计成绩后得到如下列联表:

分数不少于120

分数不足120

合计

线上学习时间不少于5小时

4

19

线上学习时间不足5小时

合计

45

1)请完成上面列联表;并判断是否有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”;

2)①按照分层抽样的方法,在上述样本中从分数不少于120分和分数不足120分的两组学生中抽取9名学生,设抽到不足120分且每周线上学习时间不足5小时的人数是,求的分布列(概率用组合数算式表示);

②若将频率视为概率,从全校高三该次检测数学成绩不少于120分的学生中随机抽取20人,求这些人中每周线上学习时间不少于5小时的人数的期望和方差.

(下面的临界值表供参考)

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式其中

查看答案和解析>>

同步练习册答案