科目: 来源: 题型:
【题目】某景区平面图如图1所示,为边界上的点.已知边界是一段抛物线,其余边界均为线段,且,抛物线顶点到的距离.以所在直线为轴,所在直线为轴,建立平面直角坐标系.
(1)求边界所在抛物线的解析式;
(2)如图2,该景区管理处欲在区域内围成一个矩形场地,使得点在边界上,点在边界上,试确定点的位置,使得矩形的周长最大,并求出最大周长.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)将的方程化为普通方程,将的方程化为直角坐标方程;
(2)已知直线的参数方程为(,为参数,且),与交于点,与交于点,且,求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】设抛物线的焦点为,准线为,为过焦点且垂直于轴的抛物线的弦,已知以为直径的圆经过点.
(1)求的值及该圆的方程;
(2)设为上任意一点,过点作的切线,切点为,证明:.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知某企业近3年的前7个月的月利润(单位:百万元)如下面的折线图所示:
(1)试问这3年的前7个月中哪个月的月平均利润最高?
(2)通过计算判断这3年的前7个月的总利润的发展趋势;
(3)试以第3年的前4个月的数据(如下表),用线性回归的拟合模式估测第3年8月份的利润.
月份x | 1 | 2 | 3 | 4 |
利润y(单位:百万元) | 4 | 4 | 6 | 6 |
相关公式: , .
查看答案和解析>>
科目: 来源: 题型:
【题目】椭圆的离心率是,过点做斜率为的直线,椭圆与直线交于两点,当直线垂直于轴时.
(Ⅰ)求椭圆的方程;
(Ⅱ)当变化时,在轴上是否存在点,使得是以为底的等腰三角形,若存在求出的取值范围,若不存在说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某企业新研发了一种产品,产品的成本由原料成本及非原料成本组成.每件产品的非原料成本(元)与生产该产品的数量(千件)有关,经统计得到如下数据:
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
y | 112 | 61 | 44.5 | 35 | 30.5 | 28 | 25 | 24 |
根据以上数据,绘制了散点图.观察散点图,两个变量不具有线性相关关系,现考虑用反比例函数模型和指数函数模型分别对两个变量的关系进行拟合,已求得:用指数函数模型拟合的回归方程为,与的相关系数;,,,,,,(其中);
(1)用反比例函数模型求关于的回归方程;
(2)用相关系数判断上述两个模型哪一个拟合效果更好(精确到0.01),并用其估计产量为10千件时每件产品的非原料成本.
参考数据:,
参考公式:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为:,,相关系数.
查看答案和解析>>
科目: 来源: 题型:
【题目】我们听到的美妙弦乐,不是一个音在响,而是许多个纯音的合成,称为复合音.复合音的响度是各个纯音响度之和.琴弦在全段振动,产生频率为的纯音的同时,其二分之一部分也在振动,振幅为全段的,频率为全段的2倍;其三分之一部分也在振动,振幅为全段的,频率为全段的3倍;其四分之一部分也在振动,振幅为全段的,频率为全段的4倍;之后部分均忽略不计.已知全段纯音响度的数学模型是函数(为时间,为响度),则复合音响度数学模型的最小正周期是_____________.
查看答案和解析>>
科目: 来源: 题型:
【题目】数学中有许多形状优美、寓意美好的曲线,曲线C:就是其中之一(如图).给出下列三个结论:
①曲线C恰好经过6个整点(即横、纵坐标均为整数的点);
②曲线C上任意一点到原点的距离都不超过;
③曲线C所围成的“心形”区域的面积小于3.
其中,所有正确结论的序号是
A. ①B. ②C. ①②D. ①②③
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com