科目: 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,,为椭圆上任意一点,当时,的面积为,且.
(1)求椭圆的方程;
(2)已知直线经点,与椭圆交于不同的两点、,且,求直线的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】在四棱锥P-ABCD中,底面ABCD为直角梯形,,,,,且平面平面ABCD.
(1)求证:;
(2)在线段PA上是否存在一点M,使二面角M-BC-D的大小为?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】实现国家富强.民族复兴.人民幸福是“中国梦”的本质内涵.某商家计划以“全民健身促健康,同心共筑中国梦”为主题举办一次有奖消费活动,此商家先把某品牌乒乓球重新包装,包装时在每个乒乓球上印上“中”“国”“梦”三个字样中的一个,之后随机装盒(1盒4个球),并规定:若顾客购买的一盒球印的是同一个字,则此顾客获得一等奖;若顾客购买的一盒球集齐了“中”“国”二字且仅有此二字,则此顾客获得二等奖;若顾客购买的一盒球集齐了“中”“国”“梦”三个字,则此顾客获得三等奖,其它情况不设奖,则顾客购买一盒乒乓球获奖的概率是_____________.
查看答案和解析>>
科目: 来源: 题型:
【题目】分形几何是一门以不规则几何形态为研究对象的几何学,科赫曲线是比较典型的分形图形,1904年瑞典数学家科赫第一次描述了这种曲线,因此将这种曲线称为科赫曲线.其生成方法是:(I)将正三角形(图(1))的每边三等分,以每边三等分后的中间的那一条线段为一边,向形外作等边三角形,并将这“中间一段”去掉,得到图(2);(II)将图(2)的每边三等分,重复上述的作图方法,得到图(3);(Ⅲ)再按上述方法继续做下去……,设图(1)中的等边三角形的边长为1,并且分别将图(1)、图(2)、图(3)、…、图(n)、…中的图形依次记作,,,…,,…,设的周长为,则为( )
A.B.C.D.
查看答案和解析>>
科目: 来源: 题型:
【题目】2020年初,我国突发新冠肺炎疫情,疫情期间中小学生“停课不停学”.已知某地区中小学生人数情况如甲图所示,各学段学生在疫情期间“家务劳动”的参与率如乙图所示.为了进一步了解该地区中小学生参与“家务劳动”的情况,现用分层抽样的方法抽取4%小学初中高中学段的学生进行调查,则抽取的样本容量、抽取的高中生家中参与“家务劳动”的人数分别为( )
A.2750,200B.2750,110C.1120,110D.1120,200
查看答案和解析>>
科目: 来源: 题型:
【题目】某公司A产品生产的投入成本x(单位:万元)与产品销售收入y(单位:十万元)存在较好的线性关系,下表记录了该公司最近8次该产品的相关数据,且根据这8组数据计算得到y关于x的线性回归方程为.
x(万元) | 6 | 7 | 8 | 11 | 12 | 14 | 17 | 21 |
y(十万元) | 1.2 | 1.5 | 1.7 | 2 | 2.2 | 2.4 | 2.6 | 2.9 |
(1)求的值(结果精确到0.0001),并估计公司A产品投入成本30万元后产品的销售收入(单位:十万元).
(2)该公司B产品生产的投入成本u(单位:万元)与产品销售收入v(单位:十万元)也存在较好的线性关系,且v关于u的线性回归方程为.
(i)估计该公司B产品投入成本30万元后的毛利率(毛利率);
(ii)判断该公司A,B两个产品都投入成本30万元后,哪个产品的毛利率更大.
查看答案和解析>>
科目: 来源: 题型:
【题目】(1)某中学理学社为了吸收更多新社员,在校团委的支持下,在高一学年组织了抽签赠书活动.月初报名,月末抽签,最初有30名同学参加.社团活动积极分子甲同学参加了活动.
①第一个月有18个中签名额.甲先抽签,乙和丙紧随其后抽签.求这三名同学同时中签的概率.
②理学社设置了第()个月中签的名额为,并且抽中的同学退出活动,同时补充新同学,补充的同学比中签的同学少2个,如果某次抽签的同学全部中签,则活动立刻结束.求甲同学参加活动时间的期望.
(2)某出版集团为了扩大影响,在全国组织了抽签赠书活动.报名和抽签时间与(1)中某中学理学社的报名和抽签时间相同,最初有30万人参加,甲同学在其中.每个月抽中的人退出活动,同时补充新人,补充的人数与中签的人数相同.出版集团设置了第()个月中签的概率为,活动进行了个月,甲同学很幸运,中签了,在此条件下,求证:甲同学参加活动时间的均值小于个月.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的离心率为,且以原点为圆心,以短轴长为直径的圆过点.
(1)求椭圆的标准方程;
(2)若过点的直线与椭圆交于不同的两点,且与圆没有公共点,设为椭圆上一点,满足(为坐标原点),求实数的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,三棱锥中,底面是边长为2的正三角形,,底面,点分别为,的中点.
(1)求证:平面平面;
(2)在线段上是否存在点,使得直线与平面所成的角的余弦值为?若存在,确定点的位置;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com