相关习题
 0  265076  265084  265090  265094  265100  265102  265106  265112  265114  265120  265126  265130  265132  265136  265142  265144  265150  265154  265156  265160  265162  265166  265168  265170  265171  265172  265174  265175  265176  265178  265180  265184  265186  265190  265192  265196  265202  265204  265210  265214  265216  265220  265226  265232  265234  265240  265244  265246  265252  265256  265262  265270  266669 

科目: 来源: 题型:

【题目】已知函数.

1)判断函数在区间上的零点的个数;

2)记函数在区间上的两个极值点分别为,求证:.

查看答案和解析>>

科目: 来源: 题型:

【题目】体温是人体健康状况的直接反应,一般认为成年人腋下温度T(单位:)平均在之间即为正常体温,超过即为发热.发热状态下,不同体温可分成以下三种发热类型:低热:;高热:;超高热(有生命危险):.某位患者因患肺炎发热,于12日至26日住院治疗.医生根据病情变化,从14日开始,以3天为一个疗程,分别用三种不同的抗生素为该患者进行消炎退热.住院期间,患者每天上午800服药,护士每天下午1600为患者测量腋下体温记录如下:

抗生素使用情况

没有使用

使用抗生素A

使用抗生素B治疗

日期

12

13

14

15

16

17

18

19

体温(

38.7

39.4

39.7

40.1

39.9

39.2

38.9

39.0

抗生素使用情况

使用抗生素C治疗

没有使用

日期

20

21

22

23

24

25

26

体温(

38.4

38.0

37.6

37.1

36.8

36.6

36.3

I)请你计算住院期间该患者体温不低于的各天体温平均值;

II)在19—23日期间,医生会随机选取3天在测量体温的同时为该患者进行某一特殊项目a项目的检查,记X为高热体温下做a项目检查的天数,试求X的分布列与数学期望;

III)抗生素治疗一般在服药后2-8个小时就能出现血液浓度的高峰,开始杀灭细菌,达到消炎退热效果.假设三种抗生素治疗效果相互独立,请依据表中数据,判断哪种抗生素治疗效果最佳,并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,在三棱锥中,,点中点.

1)求证:平面平面

2)若点中点,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,在直角梯形中,分别是上的点,,且(如图①).将四边形沿折起,连接(如图②).在折起的过程中,则下列表述:

平面

②四点可能共面;

③若,则平面平面

④平面与平面可能垂直.其中正确的是__________.

查看答案和解析>>

科目: 来源: 题型:

【题目】年初,湖北出现由新型冠状病毒引发的肺炎.为防止病毒蔓延,各级政府相继启动重大突发公共卫生事件一级响应,全国人心抗击疫情.下图表示日至日我国新型冠状病毒肺炎单日新增治愈和新增确诊病例数,则下列中表述错误的是(

A.月下旬新增确诊人数呈波动下降趋势

B.随着全国医疗救治力度逐渐加大,月下旬单日治愈人数超过确诊人数

C.日至日新增确诊人数波动最大

D.我国新型冠状病毒肺炎累计确诊人数在日左右达到峰值

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的左右焦点分别为,左顶点为,且是椭圆上一点.

1)求椭圆的方程;

2)若直线与椭圆交于两点,直线别与轴交于点,求证:在轴上存在点,使得无论非零实数怎样变化,以 为直径的圆都必过点,并求出点的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】在四棱锥中,相交于点,点在线段上,

1)求证:平面

2)若,求点到平面的距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准:用水量不超过的部分按照平价收费,超过的部分按照议价收费).为了较为合理地确定出这个标准,通过抽样获得了40位居民某年的月均用水量(单位:吨),按照分组制作了频率分布直方图,

1)从频率分布直方图中估计该40位居民月均用水量的众数,中位数;

2)在该样本中月均用水量少于1吨的居民中随机抽取两人,其中两人月均用水量都不低于0.5吨的概率是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】定义:是无穷数列,若存在正整数k使得对任意,均有则称是近似递增(减)数列,其中k叫近似递增(减)数列的间隔数

1)若是不是近似递增数列,并说明理由

2)已知数列的通项公式为,其前n项的和为,若2是近似递增数列的间隔数,求a的取值范围:

3)已知,证明是近似递减数列,并且4是它的最小间隔数.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知直线l和椭圆相交于点

1)当直线l过椭圆的左焦点和上顶点时,求直线l的方程

2)点上,若,求面积的最大值:

3)如果原点O到直线l的距离是,证明:为直角三角形.

查看答案和解析>>

同步练习册答案