相关习题
 0  265132  265140  265146  265150  265156  265158  265162  265168  265170  265176  265182  265186  265188  265192  265198  265200  265206  265210  265212  265216  265218  265222  265224  265226  265227  265228  265230  265231  265232  265234  265236  265240  265242  265246  265248  265252  265258  265260  265266  265270  265272  265276  265282  265288  265290  265296  265300  265302  265308  265312  265318  265326  266669 

科目: 来源: 题型:

【题目】“未来肯定是非接触的,无感支付的方式将成为主流,这有助于降低交互门槛”.云从科技联合创始人姚志强告诉南方日报记者.相对于主流支付方式二维码支付,刷脸支付更加便利,以前出门一部手机解决所有,而现在连手机都不需要了,毕竟,手机支付还需要携带手机,打开二维码也需要时间和手机信号.刷脸支付将会替代手机,成为新的支付方式.某地从大型超市门口随机抽取50名顾客进行了调查,得到了如表列联表:

1)请将上面的列联表补充完整,并判断是否有的把握认为使用刷脸支付与性别有关?

2)从参加调查且使用刷脸支付的顾客中随机抽取2人参加抽奖活动,抽奖活动规则如下:“一等奖”中奖概率为0.25,奖品为10元购物券张(,且),“二等奖”中奖概率0.25,奖品为10元购物券两张,“三等奖”中奖概率0.5,奖品为10元购物券一张,每位顾客是否中奖相互独立,记参与抽奖的两位顾客中奖购物券金额总和为元,若要使的均值不低于50元,求的最小值.

附:,其中.

查看答案和解析>>

科目: 来源: 题型:

【题目】在三棱锥,中,平面的中点,的中点.

1)证明:平面平面

2)在线段上是否存在一点,使平面?若存在,指出点的位置并给出证明,若不存在,说明理由;

3)若,求二面角的大小.

查看答案和解析>>

科目: 来源: 题型:

【题目】新型冠状病毒属于属的冠状病毒,有包膜,颗粒常为多形性,其中包含着结构为数学模型的,人体肺部结构中包含的结构,新型冠状病毒肺炎是由它们复合而成的,表现为.则下列结论正确的是(

A.,则为周期函数

B.对于的最小值为

C.在区间上是增函数,则

D.,满足,则

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆过点分别为椭圆C的左、右焦点且.

1)求椭圆C的方程;

2)过P点的直线与椭圆C有且只有一个公共点,直线平行于OPO为原点),且与椭圆C交于两点AB,与直线交于点MM介于AB两点之间).

i)当面积最大时,求的方程;

ii)求证:,并判断的斜率是否可以按某种顺序构成等比数列.

查看答案和解析>>

科目: 来源: 题型:

【题目】区块链技术被认为是继蒸汽机、电力、互联网之后,下一代颠覆性的核心技术区块链作为构造信任的机器,将可能彻底改变整个人类社会价值传递的方式,2015年至2019年五年期间,中国的区块链企业数量逐年增长,居世界前列现收集我国近5年区块链企业总数量相关数据,如表

年份

2015

2016

2017

2018

2019

编号

1

2

3

4

5

企业总数量y(单位:千个)

2.156

3.727

8.305

24.279

36.224

注:参考数据(其中zlny).

附:样本(xiyi)(i12n)的最小二乘法估计公式为

1)根据表中数据判断,ya+bxycedx(其中e2.71828…,为自然对数的底数),哪一个回归方程类型适宜预测未来几年我国区块链企业总数量?(给出结果即可,不必说明理由)

2)根据(1)的结果,求y关于x的回归方程(结果精确到小数点后第三位);

3)为了促进公司间的合作与发展,区块链联合总部决定进行一次信息化技术比赛,邀请甲、乙、丙三家区块链公司参赛比赛规则如下:①每场比赛有两个公司参加,并决出胜负;②每场比赛获胜的公司与未参加此场比赛的公司进行下一场的比赛;③在比赛中,若有一个公司首先获胜两场,则本次比赛结束,该公司就获得此次信息化比赛的优胜公司,已知在每场比赛中,甲胜乙的概率为,甲胜丙的概率为,乙胜丙的概率为,请通过计算说明,哪两个公司进行首场比赛时,甲公司获得优胜公司的概率最大?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数fx

1)讨论函数fx)的单调性;

2)证明:a1时,fx+gx)﹣(1lnxe

查看答案和解析>>

科目: 来源: 题型:

【题目】请从下面三个条件中任选一个,补充在下面的横线上,并作答.

ABBC,②FC与平面ABCD所成的角为,③∠ABC

如图,在四棱锥PABCD中,底面ABCD是菱形,PA⊥平面ABCD,且PAAB2,,PD的中点为F

1)在线段AB上是否存在一点G,使得AF平面PCG?若存在,指出GAB上的位置并给以证明;若不存在,请说明理由;

2)若_______,求二面角FACD的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在四面体ABCD中,ABCBCD均是边长为1的等边三角形,已知四面体ABCD的四个顶点都在同一球面上,且AD是该球的直径,则四面体ABCD的体积为( )

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】《周髀算经》是中国古代重要的数学著作,其记载的日月历法曰:阴阳之数,日月之法,十九岁为一章,四章为一部,部七十六岁,二十部为一遂,遂千百五二十岁,.生数皆终,万物复苏,天以更元作纪历,某老年公寓住有20位老人,他们的年龄(都为正整数)之和恰好为一遂,其中年长者已是奔百之龄(年龄介于90100),其余19人的年龄依次相差一岁,则年长者的年龄为( )

A.94B.95C.96D.98

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数fx)为奇函数,且当x≥0时,fx)=excosx,则不等式f2x1+fx2)>0的解集为( )

A.(﹣1B.(﹣C.+∞D.1+∞

查看答案和解析>>

同步练习册答案