相关习题
 0  265168  265176  265182  265186  265192  265194  265198  265204  265206  265212  265218  265222  265224  265228  265234  265236  265242  265246  265248  265252  265254  265258  265260  265262  265263  265264  265266  265267  265268  265270  265272  265276  265278  265282  265284  265288  265294  265296  265302  265306  265308  265312  265318  265324  265326  265332  265336  265338  265344  265348  265354  265362  266669 

科目: 来源: 题型:

【题目】某植物学家培养出一种观赏性植物,会开出红花或黄花,已知该植物第一代开红花和黄花的概率都是,从第二代开始,若上一代开红花,则这一代开红花的概率是,开黄花的概率是;若上一代开黄花,则这一代开红花的概率是,开黄花的概率是.记第n代开红花的概率为,第n代开黄花的概率为.

1)求

2)①证明:数列为等比数列;

②第代开哪种颜色花的概率更大?

查看答案和解析>>

科目: 来源: 题型:

【题目】2020年冬奥会申办成功,让中国冰雪项目迎来了新的发展机会,十四冬作为北京冬奥会前重要的练兵场,对冰雪运动产生了不可忽视的带动作用.某校对冰雪体育社团中甲、乙两人的滑轮、雪合战、雪地足球、冰尜(ga)、爬犁速降及俯卧式爬犁6个冬季体育运动项目进行了指标测试(指标值满分为5分,分高者为优),根据测试情况绘制了如图所示的指标雷达图.则下面叙述正确的是(

A.甲的轮滑指标高于他的雪地足球指标

B.乙的雪地足球指标低于甲的冰尜指标

C.甲的爬犁速降指标高于乙的爬犁速降指标

D.乙的俯卧式爬犁指标低于甲的雪合战指标

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)若函数上是单调函数,求实数的取值范围;

2)当时,为函数上的零点,求证:.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆,直线交椭圆两点,为坐标原点.

1)若直线过椭圆的右焦点,求的面积;

2)椭圆上是否存在点,使得四边形为平行四边形?若存在,求出所有满足条件的的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】在几何体中,如图,四边形为平行四边形,,平面平面平面.

1)求证:

2)求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】为助力湖北新冠疫情后的经济复苏,某电商平台为某工厂的产品开设直播带货专场.为了对该产品进行合理定价,用不同的单价在平台试销,得到如下数据:

单价(元/件)

8

8.2

8.4

8.6

8.8

9

销量(万件)

90

84

83

80

75

68

1)根据以上数据,求关于的线性回归方程;

2)若该产品成本是4/件,假设该产品全部卖出,预测把单价定为多少时,工厂获得最大利润?

(参考公式:回归方程,其中

查看答案和解析>>

科目: 来源: 题型:

【题目】时代悄然来临,为了研究中国手机市场现状,中国信通院统计了2019年手机市场每月出货量以及与2018年当月同比增长的情况,得到如下统计图,根据该统计图,下列说法错误的是(

A.2019年全年手机市场出货量中,5月份出货量最多

B.2019年下半年手机市场各月份出货量相对于上半年各月份波动小

C.2019年全年手机市场总出货量低于2018年全年总出货量

D.201812月的手机出货量低于当年8月手机出货量

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,其中

1)讨论函数的单调性;

2)若函数存在两个极值点(其中),且的取值范围为,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】一款小游戏的规则如下:每轮游戏要进行三次,每次游戏都需要从装有大小相同的2个红球,3个白球的袋中随机摸出2个球,若摸出的两个都是红球出现3次获得200分,若摸出两个都是红球出现1次或2次获得20分,若摸出两个都是红球出现0次则扣除10分(即获得分).

1)设每轮游戏中出现摸出两个都是红球的次数为,求的分布列;

2)玩过这款游戏的许多人发现,若干轮游戏后,与最初的分数相比,分数没有增加反而减少了,请运用概率统计的相关知识分析解释上述现象.

查看答案和解析>>

科目: 来源: 题型:

【题目】直四棱柱被平面所截得到如图所示的五面体,

1)求证:∥平面

2)若,求二面角的余弦值.

查看答案和解析>>

同步练习册答案