相关习题
 0  265190  265198  265204  265208  265214  265216  265220  265226  265228  265234  265240  265244  265246  265250  265256  265258  265264  265268  265270  265274  265276  265280  265282  265284  265285  265286  265288  265289  265290  265292  265294  265298  265300  265304  265306  265310  265316  265318  265324  265328  265330  265334  265340  265346  265348  265354  265358  265360  265366  265370  265376  265384  266669 

科目: 来源: 题型:

【题目】的内角的对边分别为,已知 .

(1)求角

(2)若点满足,求的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

1)当时,求曲线与曲线的公切线的方程;

2)设函数的两个极值点为,求证:关于的方程有唯一解.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中, ,动点满足:以为直径的圆与轴相切.

(1)求点的轨迹方程;

(2)设点的轨迹为曲线,直线过点且与交于两点,当的面积之和取得最小值时,求直线的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】从某工厂的一个车间抽取某种产品50件,产品尺寸(单位:cm)落在各个小组的频数分布如下表:

数据分组

[12.515.5

[15.518.5

[18.521.5

[21.524.5

[24.527.5

[27.530.5

[30.533.5

频数

3

8

9

12

10

5

3

1)根据频数分布表,求该产品尺寸落在[27.533.5]内的概率;

2)求这50件产品尺寸的样本平均数(同一组中的数据用该组区间的中点值作代表);

3)根据频数分布对应的直方图,可以认为这种产品尺寸服从正态分布,其中近似为样本平均值近似为样本方差,经计算得.利用该正态分布,求.

附:(1)若随机变量服从正态分布,则;(2.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,矩形中,,,的中点,点,分别在线段,上运动(其中不与,重合,不与,重合),且,沿折起,得到三棱锥,则三棱锥体积的最大值为__________;当三棱锥体积最大时,其外接球的表面积的值为_______________.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数是定义在R上的奇函数,当时,,则下列命题正确的是(

A.时,

B.函数3个零点

C.的解集为

D.,都有

查看答案和解析>>

科目: 来源: 题型:

【题目】古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点的距离之比为定值的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆在平面直角坐标系中,.设点的轨迹为,下列结论正确的是( )

A. 的方程为

B. 轴上存在异于的两定点,使得

C. 三点不共线时,射线的平分线

D. 上存在点,使得

查看答案和解析>>

科目: 来源: 题型:

【题目】2019年以来,世界经济和贸易增长放缓,中美经贸摩擦影响持续显现,我国对外贸易仍然表现出很强的韧性.今年以来,商务部会同各省市全面贯彻落实稳外贸决策部署,出台了一系列政策举措,全力营造法治化、国际化、便利化的营商环境,不断提高贸易便利化水平,外贸稳规模、提质量、转动力取得阶段性成效,进出口保持稳中提质的发展势头,下图是某省近五年进出口情况统计图,下列描述正确的是(

A.这五年,2015年出口额最少B.这五年,出口总额比进口总额多

C.这五年,出口增速前四年逐年下降D.这五年,2019年进口增速最快

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

1)若,求函数处的切线方程;

2)若函数在定义域上恰有两个不同的零点,求实数a的取值范围;

3)设函数在区间)上存在极值,求证:.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知正项数列满足:对任意正整数,都有成等差数列,成等比数列,且

)求证:数列是等差数列;

)求数列的通项公式;

)设=++…+,如果对任意的正整数,不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案