相关习题
 0  265204  265212  265218  265222  265228  265230  265234  265240  265242  265248  265254  265258  265260  265264  265270  265272  265278  265282  265284  265288  265290  265294  265296  265298  265299  265300  265302  265303  265304  265306  265308  265312  265314  265318  265320  265324  265330  265332  265338  265342  265344  265348  265354  265360  265362  265368  265372  265374  265380  265384  265390  265398  266669 

科目: 来源: 题型:

【题目】《普通高中数学课程标准(2017版)》提出了数学学科的六大核心素养.为了比较甲、乙两名高二学生的数学核心素养水平,现以六大素养为指标对二人进行了测验,根据测验结果绘制了雷达图(如图,每项指标值满分为5分,分值高者为优),则下面叙述正确的是(

A.甲的数据分析素养高于乙

B.甲的数学建模素养优于数学抽象素养

C.乙的六大素养中逻辑推理最差

D.乙的六大素养整体平均水平优于甲

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数.

1)设的极值点,求,并讨论的单调性;

2)若,证明:在区间内,存在唯一的极小值点,且.

查看答案和解析>>

科目: 来源: 题型:

【题目】201910月,工信部颁发了国内首个无线电通信设备进网许可证,标志着基站设备将正式接入公用电信商用网络.手机生产商拟升级设备生产手机,有两种方案可供选择,方案1:直接引进手机生产设备;方案2:对已有的手机生产设备进行技术改造,升级到手机生产设备.该生产商对未来手机销售市场行情及回报率进行大数据模拟,得到如下统计表:

市场销售状态

畅销

平销

滞销

市场销售状态概率

预期年利润数值(单位:亿元)

方案1

70

40

-40

方案2

60

30

-10

1)以预期年利润的期望值为依据,求的取值范围,讨论该生产商应该选择哪种方案进行设备升级?

2)设该生产商升级设备后生产的手机年产量为万部,通过大数据模拟核算,选择方案1所生产的手机年度总成本(亿元),选择方案2所生产的手机年度总成为(亿元).已知,当所生产的手机市场行情为畅销、平销和滞销时,每部手机销售单价分别为0.8万元,(万元),(万元),根据(1)的决策,求该生产商所生产的手机年利润期望的最大值?并判断这个年利润期望的最大值能否达到预期年利润数值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,底面,四边形是菱形,点在线段.

1)证明:平面平面

2)若,二面角的余弦值为,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】关于函数,有下述四个结论:

①若内单调递增,则.

②若内单调递减,则.

③若内有且仅有一个极大值点,则.

④若内有且仅有一个极小值点,则.

其中所有正确结论的序号是(

A.①③B.②③C.①④D.③④

查看答案和解析>>

科目: 来源: 题型:

【题目】已知为双曲线的一个焦点,过的一条渐近线的垂线,垂足为点的另一条渐近线交于点,若,则的离心率为(

A.2B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程为t为参数),曲线C的极坐标方程为ρ=4sinθ+).

(1)求直线l的普通方程与曲线C的直角坐标方程;

(2)若直线l与曲线C交于MN两点,求△MON的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

1)若,求的单调区间;

2)证明:(i

ii)对任意恒成立.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的离心率为分别是其左、右焦点,且过点.

(1)求椭圆的标准方程;

(2)求的外接圆的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】201835日上午,李克强总理做政府工作报告时表示,将新能源汽车车辆购置税优惠政策再延长三年,自201811日至20201231日,对购置的新能源汽车免征车辆购置税.新能源汽车销售的春天来了!从衡阳地区某品牌新能源汽车销售公司了解到,为了帮助品牌迅速占领市场,他们采取了保证公司正常运营的前提下实行薄利多销的营销策略(即销售单价随日销量(台)变化而有所变化),该公司的日盈利(万元),经过一段时间的销售得到的一组统计数据如下表:

日销量

1

2

3

4

5

日盈利万元

6

13

17

20

22

将上述数据制成散点图如图所示:

1)根据散点图判断中,哪个模型更适合刻画之间的关系?并从函数增长趋势方面给出简单的理由;

2)根据你的判断及下面的数据和公式,求出关于的回归方程,并预测当日销量时,日盈利是多少?

参考公式及数据:线性回归方程,其中

.

查看答案和解析>>

同步练习册答案