相关习题
 0  265220  265228  265234  265238  265244  265246  265250  265256  265258  265264  265270  265274  265276  265280  265286  265288  265294  265298  265300  265304  265306  265310  265312  265314  265315  265316  265318  265319  265320  265322  265324  265328  265330  265334  265336  265340  265346  265348  265354  265358  265360  265364  265370  265376  265378  265384  265388  265390  265396  265400  265406  265414  266669 

科目: 来源: 题型:

【题目】甲、乙两人进行象棋比赛,采取五局三胜制(不考虑平局,先赢得三场的人为获胜者,比赛结束).根据前期的统计分析,得到甲在和乙的第一场比赛中,取胜的概率为0.5,受心理方面的影响,前一场比赛结果会对甲的下一场比赛产生影响,如果甲在某一场比赛中取胜,则下一场取胜率提高0.1,反之,降低0.1.则甲以3:1取得胜利的概率为( )

A.0.162B.0.18C.0.168D.0.174

查看答案和解析>>

科目: 来源: 题型:

【题目】已知长方体,已知P是矩形内一动点,与平面所成角为,设P点形成的轨迹长度为,则_________;当的长度最短时,三棱锥的外接球的表面积为_____________.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)求 函数的单调区间;

2)定义:对于函数,若存在,使成立,则称为函数的不动点. 如果函数存在两个不同的不动点,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四边形中,,以为折痕把折起,使点到达点的位置,且.

1)证明:平面

2)若的中点,二面角等于60°,求直线与平面所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】《山东省高考改革试点方案》规定:从2017年秋季高中入学的新生开始,不分文理科;2020年开始,高考总成绩由语数外3门统考科目和物理、化学等六门选考科目构成.将每门选考科目的考生原始成绩从高到低划分为A、B+、B、C+、C、D+、D、E共8个等级.参照正态分布原则,确定各等级人数所占比例分别为3%、7%、16%、24%、24%、16%、7%、3%.选考科目成绩计入考生总成绩时,将A至E等级内的考生原始成绩,依照等比例转换法则,分别转换到[91,100]、[81,90]、[71,80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八个分数区间,得到考生的等级成绩.

某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布N(60,169).

(Ⅰ)求物理原始成绩在区间(47,86)的人数;

(Ⅱ)按高考改革方案,若从全省考生中随机抽取3人,记X表示这3人中等级成绩在区间[61,80]的人数,求X的分布列和数学期望.

(附:若随机变量,则

查看答案和解析>>

科目: 来源: 题型:

【题目】生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”. 为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节,“礼”和“乐”必须相邻安排的概率为( )

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线的焦点为,过作斜率为的直线两点,以线段为直径的圆.时,圆的半径为2.

1)求的方程;

2)已知点,对任意的斜率,圆上是否总存在点满足,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数处取得极值.

1)求,并求的单调区间;

2)证明:当时,.

查看答案和解析>>

科目: 来源: 题型:

【题目】年是打赢蓝天保卫战三年行动计划的決胜之年,近年来,在各地各部门共同努力下,蓝天保卫战各项任务措施稳步推进,取得了积极成效,某学生随机收集了甲城市近两年上半年中各天的空气量指数,得到频数分布表如下:

年上半年中天的频数分布表

的分组

天数

年上半年中天的频数分布表

的分组

天数

1)估计年上半年甲城市空气质量优良天数的比例;

2)求年上半年甲城市的平均数和标准差的估计值(同一组中的数据用该组区间的中点值为代表);(精确到

3)用所学的統计知识,比较年上半年与年上半年甲城市的空气质量情况.

附:

的分组

空气质量

轻度污染

中度污染

重度污染

严重污染

.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四棱锥中,四边形为正方形,分别为中点.

[Failed to download image : http://192.168.0.10:8086/QBM/2020/6/18/2487522753945600/2488179565404160/STEM/3bba3a8519b8447aaec6f2ca7eb73ba0.png]

1)证明:平面

2)已知,求三棱锥的体积.

查看答案和解析>>

同步练习册答案