相关习题
 0  265234  265242  265248  265252  265258  265260  265264  265270  265272  265278  265284  265288  265290  265294  265300  265302  265308  265312  265314  265318  265320  265324  265326  265328  265329  265330  265332  265333  265334  265336  265338  265342  265344  265348  265350  265354  265360  265362  265368  265372  265374  265378  265384  265390  265392  265398  265402  265404  265410  265414  265420  265428  266669 

科目: 来源: 题型:

【题目】已知函数

1)若,试讨论的单调性;

2)若,实数为方程的两不等实根,求证:.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知倾斜角为的直线经过抛物线的焦点,与抛物线相交于两点,且.

1)求抛物线的方程;

2)设为抛物线上任意一点(异于顶点),过做倾斜角互补的两条直线,交抛物线于另两点,记抛物线在点的切线的倾斜角为,直线的倾斜角为,求证:互补.

查看答案和解析>>

科目: 来源: 题型:

【题目】在全面抗击新冠肺炎疫情这一特殊时期,我市教育局提出“停课不停学”的口号,鼓励学生线上学习.某校数学教师为了调查高三学生数学成绩与线上学习时间之间的相关关系,对高三年级随机选取45名学生进行跟踪问卷,其中每周线上学习数学时间不少于5小时的有19人,余下的人中,在检测考试中数学平均成绩不足120分的占,统计成绩后得到如下列联表:

分数不少于120

分数不足120

合计

线上学习时间不少于5小时

4

19

线上学习时间不足5小时

合计

45

1)请完成上面列联表;并判断是否有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”;

2)①按照分层抽样的方法,在上述样本中从分数不少于120分和分数不足120分的两组学生中抽取9名学生,设抽到不足120分且每周线上学习时间不足5小时的人数是,求的分布列(概率用组合数算式表示);

②若将频率视为概率,从全校高三该次检测数学成绩不少于120分的学生中随机抽取20人,求这些人中每周线上学习时间不少于5小时的人数的期望和方差.

(下面的临界值表供参考)

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式其中

查看答案和解析>>

科目: 来源: 题型:

【题目】赵爽是我国古代数学家、天文学家,大约公元222年,赵爽为《周髀算经》一书作序时,介绍了勾股圆方图,又称赵爽弦图(以弦为边长得到的正方形是由个全等的直角三角形再加上中间的一个小正方形组成的,如图(1)),类比赵爽弦图,可类似地构造如图(2)所示的图形,它是由个全等的三角形与中间的一个小正六边形组成的一个大正六边形,设,若在大正六边形中随机取一点,则此点取自小正六边形的概率为(

A.B.

C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】人们通常以分贝(符号是)为单位来表示声音强度的等级,30~40分贝是较理想的安静环境,超过50分贝就会影响睡眠和休息,70分贝以上会干扰谈话,长期生活在90分贝以上的嗓声环境,会严重影响听力和引起神经衰弱、头疼、血压升高等疾病,如果突然暴露在高达150分贝的噪声环境中,听觉器官会发生急剧外伤,引起鼓膜破裂出血,双耳完全失去听力,为了保护听力,应控制噪声不超过90分贝,一般地,如果强度为的声音对应的等级为,则有,则的声音与的声音强度之比为(

A.10B.100C.1000D.10000

查看答案和解析>>

科目: 来源: 题型:

【题目】农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称粽子,古称角黍,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.如图,平行四边形形状的纸片是由六个边长为1的正三角形构成的,将它沿虚线折起来,可以得到如图所示粽子形状的六面体,则该六面体的体积为____;若该六面体内有一球,则该球体积的最大值为____

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知抛物线焦点为,过上一点作切线,交轴于点,过点作直线于点.

1)证明:

2)设直线的斜率为的面积为,若,求的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在中,的中点,.现将沿翻折至,得四棱锥.

1)证明:

2)若,求直线与平面所成角的正切值

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

命题①:对任意的是函数的零点;

命题②:对任意的是函数的极值点.

A.命题①和②都成立B.命题①和②都不成立

C.命题①成立,命题②不成立D.命题①不成立,命题②成立

查看答案和解析>>

科目: 来源: 题型:

【题目】某四棱锥的三视图如图所示,则它的体积为_______,表面积为_______

查看答案和解析>>

同步练习册答案