科目: 来源: 题型:
【题目】已知椭圆:的离心率为,焦距为.
(1)求的方程;
(2)若斜率为的直线与椭圆交于,两点(点,均在第一象限),为坐标原点.
①证明:直线的斜率依次成等比数列.
②若与关于轴对称,证明:.
查看答案和解析>>
科目: 来源: 题型:
【题目】某工厂预购软件服务,有如下两种方案:
方案一:软件服务公司每日收取工厂60元,对于提供的软件服务每次10元;
方案二:软件服务公司每日收取工厂200元,若每日软件服务不超过15次,不另外收费,若超过15次,超过部分的软件服务每次收费标准为20元.
(1)设日收费为元,每天软件服务的次数为,试写出两种方案中与的函数关系式;
(2)该工厂对过去100天的软件服务的次数进行了统计,得到如图所示的条形图,依据该统计数据,把频率视为概率,从节约成本的角度考虑,从两个方案中选择一个,哪个方案更合适?请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD是矩形,A1D与AD1交于点E,AA1=AD=2AB=4.
(1)证明:AE⊥平面ECD.
(2)求直线A1C与平面EAC所成角的正弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】“割圆术”是刘徽最突出的数学成就之一,他在《九章算术注》中提出割圆术,并作为计算圆的周长,面积已经圆周率的基础,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率为3.1415和3.1416这两个近似数值,这个结果是当时世界上圆周率计算的最精确数据.如图,当分割到圆内接正六边形时,某同学利用计算机随机模拟法向圆内随机投掷点,计算得出该点落在正六边形内的频率为0.8269,那么通过该实验计算出来的圆周率近似值为(参考数据:)
A. 3.1419B. 3.1417C. 3.1415D. 3.1413
查看答案和解析>>
科目: 来源: 题型:
【题目】设是数列1,,,…,的各项和,,.
(1)设,证明:在内有且只有一个零点;
(2)当时,设存在一个与上述数列的首项、项数、末项都相同的等差数列,其各项和为,比较与的大小,并说明理由;
(3)给出由公式推导出公式的一种方法如下:在公式中两边求导得:,所以成立,请类比该方法,利用上述数列的末项的二项展开式证明:时(其中表示组合数)
查看答案和解析>>
科目: 来源: 题型:
【题目】为了严格监控某种零件的一条生产线的生产过程,某企业每天从该生产线上随机抽取10000个零件,并测量其内径(单位:).根据长期生产经验,认为这条生产线正常状态下生产的零件的内径服从正态分布.如果加工的零件内径小于或大于均为不合格品,其余为合格品.
(1)假设生产状态正常,请估计一天内抽取的10000个零件中不合格品的个数约为多少;
(2)若生产的某件产品为合格品则该件产品盈利;若生产的某件产品为不合格品则该件产品亏损.已知每件产品的利润(单位:元)与零件的内径有如下关系:.求该企业一天从生产线上随机抽取10000个零件的平均利润.
附:若随机变量服从正态分布,有,,.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,点是以为直径的圆上的动点(异于,),已知,,平面,四边形为平行四边形.
(1)求证:平面;
(2)当三棱锥的体积最大时,求平面与平面所成的锐二面角的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某学校共有教职工120人,对他们进行年龄结构和受教育程度的调查,其结果如下表:
本科 | 研究生 | 合计 | |
35岁以下 | 40 | 30 | 70 |
35-50岁 | 27 | 13 | 40 |
50岁以上 | 8 | 2 | 10 |
现从该校教职工中任取1人,则下列结论正确的是( )
A.该教职工具有本科学历的概率低于60%
B.该教职工具有研究生学历的概率超过50%
C.该教职工的年龄在50岁以上的概率超过10%
D.该教职工的年龄在35岁及以上且具有研究生学历的概率超过10%
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1.四边形是边长为10的菱形,其对角线,现将沿对角线折起,连接,形成如图2的四面体,则异面直线与所成角的大小为______.在图2中,设棱的中点为,的中点为,若四面体的外接球的球心在四面体的内部,则线段长度的取值范围为______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com