相关习题
 0  265242  265250  265256  265260  265266  265268  265272  265278  265280  265286  265292  265296  265298  265302  265308  265310  265316  265320  265322  265326  265328  265332  265334  265336  265337  265338  265340  265341  265342  265344  265346  265350  265352  265356  265358  265362  265368  265370  265376  265380  265382  265386  265392  265398  265400  265406  265410  265412  265418  265422  265428  265436  266669 

科目: 来源: 题型:

【题目】以直角坐标系的原点为极点,轴的正半轴为极轴,两个坐标系取相等的长度单位.已知圆的参数方程为为参数),直线的直角坐标方程为.

1)求圆的普通方程和直线的极坐标方程;

2)设圆和直线交于两点,求的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数自然对数的底数)有两个零点.

1)求实数的取值范围;

2)若的两个零点分别为,证明:.

查看答案和解析>>

科目: 来源: 题型:

【题目】某校为了解该校学生停课不停学的网络学习效率,随机抽查了高一年级100位学生的某次数学成绩,得到如图所示的频率分布直方图:

1)估计这100位学生的数学成绩的平均值.(同一组中的数据用该组区间的中点值代表);

2)根据整个年级的数学成绩,可以认为学生的数学成绩近似地服从正态分布经计算,(1)问中样本标准差的近似值为10.用样本平均数作为的近似值,用样本标准差作为的估计值,现任抽取一位学生,求他的数学成绩恰在64分到94分之间的概率.

参考数据:若随机变量,则

3)该年级1班的数学老师为了能每天督促学生的网络学习,提高学生每天的作业质量及学习数学的积极性,特意在微信上设计了一个每日作业小程序,每当学生提交的作业获得优秀时,就有机会参与一次小程序中玩游戏,得奖励积分的活动,开学后可根据获得积分的多少领取老师相应的小奖品.小程序页面上有一列方格,共15格,刚开始有只小兔子在第1格,每点一下游戏的开始按钮,小兔子就沿着方格跳一下,每次跳1格或跳2格,概率均为,依次点击游戏的开始按钮,直到小兔子跳到第14格(奖励0分)或第15格(奖励5分)时,游戏结束,每天的积分自动累加,设小兔子跳到第格的概率为,试证明是等比数列,并求的值.(获胜的概率)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线的焦点为,直线与抛物线交于两点.

1)若,求直线的方程;

2)过点作直线交抛物线两点,若线段的中点分别为,直线轴的交点为,求点到直线距离和的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知四边形是梯形,如图的中点,以为折痕把折起,使点到达点的位置(如图2),且

1)求证:平面平面

2)求与平面所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】对于函数为自然对数的底数,),函数,给出下列结论:

①函数的图象在处的切线在轴的截距为

②函数是奇函数,且在上单调递增;

③函数存在唯一的极小值点,其中,且

④函数存在两个极小值点和两个极大值点.

其中所有正确结论的序号是(

A.①②③B.①④C.①③④D.②④

查看答案和解析>>

科目: 来源: 题型:

【题目】为彻底打赢脱贫攻坚战,2020年春,某市政府投入资金帮扶某农户种植蔬菜大棚脱贫致富,若该农户计划种植冬瓜和茄子,总面积不超过15亩,帮扶资金不超过4万元,冬瓜每亩产量10 000斤,成本2000元,每斤售价0.5元,茄子每亩产量5000斤,成本3000元,每斤售价1.4元,则该农户种植冬瓜和茄子利润的最大值为(

A.4万元B.5.5万元C.6.5万元D.10万元

查看答案和解析>>

科目: 来源: 题型:

【题目】今年310日湖北武汉某方舱医院关门大吉,某省驰援湖北抗疫9名身高各不相同的医护人员站成一排合影留念,庆祝圆满完成抗疫任务,若恰好从中间往两边看都依次变低,则身高排第4的医护人员和最高的医护人员相邻的概率为(

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)讨论的单调性.

(2)试问是否存在,使得恒成立?若存在,求的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的长轴长为,焦距为2,抛物线的准线经过C的左焦点F.

1)求CM的方程;

2)直线l经过C的上顶点且lM交于PQ两点,直线FPFQM分别交于点D(异于点P),E(异于点Q),证明:直线DE的斜率为定值.

查看答案和解析>>

同步练习册答案