相关习题
 0  265245  265253  265259  265263  265269  265271  265275  265281  265283  265289  265295  265299  265301  265305  265311  265313  265319  265323  265325  265329  265331  265335  265337  265339  265340  265341  265343  265344  265345  265347  265349  265353  265355  265359  265361  265365  265371  265373  265379  265383  265385  265389  265395  265401  265403  265409  265413  265415  265421  265425  265431  265439  266669 

科目: 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)求的普通方程和的直角坐标方程;

(Ⅱ)若交于两点,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,其中a为正实数.

1)求函数的单调区间;

2)若函数有两个极值点,求证:.

查看答案和解析>>

科目: 来源: 题型:

【题目】一场突如其来的新冠肺炎疫情在全国蔓延,在党中央的坚强领导和统一指挥下,全国人民众志成城、团结一心,共抗疫情。每天测量体温也就成为了所有人的一项责任,一般认为成年人腋下温度(单位:℃)平均在36℃~37℃之间即为正常体温,超过37.1℃即为发热。发热状态下,不同体温可分成以下三种发热类型:低热:;高热:;超高热(有生命危险):.

某位患者因发热,虽排除肺炎,但也于12日至26日住院治疗. 医生根据病情变化,从14日开始,以3天为一个疗程,分别用三种不同的抗生素为该患者进行消炎退热. 住院期间,患者每天上午8:00服药,护士每天下午16:00为患者测量腋下体温记录如下:

抗生素使用情况

没有使用

使用“抗生素A”治疗

使用“抗生素B”治疗

日期

12

13

14

15

16

17

18

19

体温(℃)

38.7

39.4

39.7

40.1

39.9

39.2

38.9

39.0

抗生素使用情况

使用“抗生素C”治疗

没有使用

日期

20

21

22

23

24

25

26

体温(℃)

38.4

38.0

37.6

37.1

36.8

36.6

36.3

1)请你计算住院期间该患者体温不低于39℃的各天体温平均值;

2)在18日—22日期间,医生会随机选取3天在测量体温的同时为该患者进行某一特殊项目“项目”的检查,求至少两天在高热体温下做“项目”检查的概率;

3)抗生素治疗一般在服药后2-8个小时就能出现血液浓度的高峰,开始杀灭细菌,达到消炎退热效果.假设三种抗生素治疗效果相互独立,请依据表中数据,判断哪种抗生素治疗效果最佳,并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】在三棱柱中, 的中点.

(1)证明: 平面

(2)若,点在平面的射影在上,且侧面的面积为,求三棱锥的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图(1),在圆锥内放两个大小不同且不相切的球,使得它们分别与圆锥的侧面、底面相切,用与两球都相切的平面截圆锥的侧面得到截口曲线是椭圆.理由如下:如图(2),若两个球分别与截面相切于点,在得到的截口曲线上任取一点,过点作圆锥母线,分别与两球相切于点,由球与圆的几何性质,得,所以,且,由椭圆定义知截口曲线是椭圆,切点为焦点.这个结论在圆柱中也适用,如图(3),在一个高为,底面半径为的圆柱体内放球,球与圆柱底面及侧面均相切.若一个平面与两个球均相切,则此平面截圆柱所得的截口曲线也为一个椭圆,则该椭圆的离心率为______.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴,建立平面直角坐标系,直线过点,倾斜角为

1)求曲线的直角坐标方程与直线l的参数方程;

2)设直线与曲线交于两点,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)讨论函数的极值点个数;

2)若有两个极值点,试判断的大小关系并证明.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆Cab0)的焦距为2,且过点.

1)求椭圆C的方程;

2)已知△BMN是椭圆C的内接三角形,若坐标原点O为△BMN的重心,求点O到直线MN距离的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱柱ABCA1B1C1中,已知四边形AA1C1C为矩形,AA16ABAC4,∠BAC=∠BAA160°,∠A1AC的角平分线ADCC1D.

1)求证:平面BAD⊥平面AA1C1C

2)求二面角AB1C1A1的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】垃圾分类是对垃圾进行有效处置的一种科学管理方法,为了了解居民对垃圾分类的知晓率和参与率,引导居民积极行动,科学地进行垃圾分类,某小区随机抽取年龄在区间[2585]上的50人进行调研,统计出年龄频数分布及了解垃圾分类的人数如表:

1)填写下面2x2列联表,并判断能否在犯错误的概率不超过0.01的前提下认为以65岁为分界点居民对了解垃圾分类的有关知识有差异;

2)若对年龄在[4555),[2535)的被调研人中各随机选取2人进行深入调研,记选中的4人中不了解垃圾分类的人数为X,求随机变量X的分布列和数学期望.

参考公式和数据K2,其中na+b+c+d.

查看答案和解析>>

同步练习册答案