相关习题
 0  265266  265274  265280  265284  265290  265292  265296  265302  265304  265310  265316  265320  265322  265326  265332  265334  265340  265344  265346  265350  265352  265356  265358  265360  265361  265362  265364  265365  265366  265368  265370  265374  265376  265380  265382  265386  265392  265394  265400  265404  265406  265410  265416  265422  265424  265430  265434  265436  265442  265446  265452  265460  266669 

科目: 来源: 题型:

【题目】厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.

1)若厂家库房中(视为数量足够多)的每件产品合格的概率为 从中任意取出 3件进行检验,求至少有 件是合格品的概率;

2)若厂家发给商家 件产品,其中有不合格,按合同规定 商家从这 件产品中任取件,都进行检验,只有 件都合格时才接收这批产品,否则拒收.求该商家可能检验出的不合格产品的件数ξ的分布列,并求该商家拒收这批产品的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C的参数方程为,(θ为参数),以原点为极点,x轴非负半轴为极轴建立极坐标系.

1)求曲线C的极坐标方程;

2)在平面直角坐标系xOy中,A(﹣20),B0,﹣2),M是曲线C上任意一点,求ABM面积的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知.

(1)当时,求函数图象在处的切线方程;

(2)若对任意,不等式恒成立,求的取值范围;

(3)若存在极大值和极小值,且极大值小于极小值,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在直三棱柱中,,分别是,的中点.

1)求证:平面

2)求证:平面平面

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)若函数上单调递增,求实数的取值范围;

(2)若函数有两个不同的零点.

(ⅰ)求实数的取值范围;

(ⅱ)求证:.(其中的极小值点)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线)上的两个动点,焦点为F.线段AB的中点为,且AB两点到抛物线的焦点F的距离之和为8.


1)求抛物线的标准方程;

2)若线段AB的垂直平分线与x轴交于点C,求面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】等比数列{an}的各项均为正数,且2a1+3a2=1, =9a2a6.

(1)求数列{an}的通项公式;

(2)设bn=log3a1+log3a2+…+log3an,求数列的前n项和.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知在上任意一点处的切线,若过右焦点的直线交椭圆两点,已知在点处切线相交于.

(Ⅰ)求点的轨迹方程;

(Ⅱ)①若过点且与直线垂直的直线(斜率存在且不为零)交椭圆两点,证明为定值.

②四边形的面积是否有最小值,若有请求出最小值;若没有请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)若,且内有且只有一个零点,求的值;

(2)若,且有三个不同零点,问是否存在实数使得这三个零点成等差数列?若存在,求出的值,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】指数是用体重公斤数除以身高米数的平方得出的数字,是国际上常用的衡量人体胖瘦程度以及是否健康的一个标准.对于高中男体育特长生而言,当数值大于或等于20.5时,我们说体重较重,当数值小于20.5时,我们说体重较轻,身高大于或等于我们说身高较高,身高小于170cm我们说身高较矮.

(Ⅰ)已知某高中共有32名男体育特长生,其身高与指数的数据如散点图,请根据所得信息,完成下述列联表,并判断是否有的把握认为男生的身高对指数有影响.

身高较矮

身高较高

合计

体重较轻

体重较重

合计

(Ⅱ)①从上述32名男体育特长生中随机选取8名,其身高和体重的数据如表所示:

编号

1

2

3

4

5

6

7

8

身高

166

167

160

173

178

169

158

173

体重

57

58

53

61

66

57

50

66

根据最小二乘法的思想与公式求得线性回归方程为.利用已经求得的线性回归方程,请完善下列残差表,并求(解释变量(身高)对于预报变量(体重)变化的贡献值)(保留两位有效数字);

编号

1

2

3

4

5

6

7

8

体重(kg

57

58

53

61

66

57

50

66

残差

②通过残差分析,对于残差的最大(绝对值)的那组数据,需要确认在样本点的采集中是否有人为的错误,已知通过重新采集发现,该组数据的体重应该为.小明重新根据最小二乘法的思想与公式,已算出,请在小明所算的基础上求出男体育特长生的身高与体重的线性回归方程.

参考数据:

参考公式:

0.10

0.05

0.01

0.005

2.706

3.811

6.635

7.879

查看答案和解析>>

同步练习册答案