科目: 来源: 题型:
【题目】新冠来袭,湖北告急!有一支援鄂医疗小队由3名医生和6名护士组成,他们全部要分配到三家医院.每家医院分到医生1名和护士1至3名,其中护士甲和护士乙必须分到同一家医院,则不同的分配方法有( )种
A.252B.540C.792D.684
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆,右顶点,上顶点为B,左右焦点分别为,且,过点A作斜率为的直线l交椭圆于点D,交y轴于点E.
(1)求椭圆C的方程;
(2)设P为的中点,是否存在定点Q,对于任意的都有?若存在,求出点Q;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】阿波罗尼斯(古希腊数学家,约公元前262-190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.①若定点为,写出的一个阿波罗尼斯圆的标准方程__________;②△中,,则当△面积的最大值为时,______.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,已知椭圆E:的离心率是,短轴长为2,若点A,B分别是椭圆E的左右顶点,动点,,直线交椭圆E于P点.
(1)求椭圆E的方程
(2)①求证:是定值;
②设的面积为,四边形的面积为,求的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥中,平面,,且,,,,,N为的中点.
(1)求证:平面
(2)求平面与平面所成锐二面角的余弦值
(3)在线段上是否存在一点M,使得直线与平面所成角的正弦值为,若存在,求出的值;若不存在,说明理由
查看答案和解析>>
科目: 来源: 题型:
【题目】农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称粽子,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期的楚国大臣、爱国主义诗人屈原.如图,平行四边形形状的纸片是由六个边长为2的正三角形组成的,将它沿虚线对折起来,可以得到如图所示粽子形状的六面体,则该六面体的体积为______________
查看答案和解析>>
科目: 来源: 题型:
【题目】某校在高一年级一班至六班进行了“社团活动”满意度调查(结果只有“满意”和“不满意”两种),从被调查的学生中随机抽取了50人,具体的调查结果如表:
班号 | 一班 | 二班 | 三班 | 四班 | 五班 | 六班 |
频数 | 4 | 5 | 11 | 8 | 10 | 12 |
满意人数 | 3 | 2 | 8 | 5 | 6 | 6 |
现从一班和二班调查对象中随机选取4人进行追踪调查,则选中的4人中恰有2人不满意的概率为___________;若将以上统计数据中学生持满意态度的频率视为概率,在高一年级全体学生中随机抽取3名学生,记其中满意的人数为X,则随机变量X的数学期望是___________
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com