科目: 来源: 题型:
【题目】已知数列{an}的前n项和Sn=n2+pn,且a4,a7,a12成等比数列.
(1)求数列{an}的通项公式;
(2)若bn,求数列{bn}的前n项和Tn.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知x与y之间的几组数据如表:
x | 1 | 2 | 3 | 4 |
y | 1 | m | n | 4 |
如表数据中y的平均值为2.5,若某同学对m赋了三个值分别为1.5,2,2.5,得到三条线性回归直线方程分别为,,,对应的相关系数分别为,,,下列结论中错误的是( )
参考公式:线性回归方程中,其中,.相关系数.
A.三条回归直线有共同交点B.相关系数中,最大
C.D.
查看答案和解析>>
科目: 来源: 题型:
【题目】我们打印用的A4纸的长与宽的比约为,之所以是这个比值,是因为把纸张对折,得到的新纸的长与宽之比仍约为,纸张的形状不变.已知圆柱的母线长小于底面圆的直径长(如图所示),它的轴截面ABCD为一张A4纸,若点E为上底面圆上弧AB的中点,则异面直线DE与AB所成的角约为( )
A.B.C.D.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,由经过伸缩变换得到曲线,以原点为极点,轴非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)求曲线的极坐标方程以及曲线的直角坐标方程;
(2)若直线的极坐标方程为,与曲线、曲线在第一象限交于、,且,点的极坐标为,求的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知,直线不过原点且不平行于坐标轴,与有两个交点,,线段的中点为.
(1)若,点在椭圆上,、分别为椭圆的两个焦点,求的范围;
(2)若过点,射线与椭圆交于点,四边形能否为平行四边形?若能,求此时直线斜率;若不能,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】一饮料店制作了一款新饮料,为了进行合理定价先进行试销售,其单价(元)与销量(杯)的相关数据如下表:
单价(元) | 8.5 | 9 | 9.5 | 10 | 10.5 |
销量(杯) | 120 | 110 | 90 | 70 | 60 |
(1)已知销量与单价具有线性相关关系,求关于的线性回归方程;
(2)若该款新饮料每杯的成本为8元,试销售结束后,请利用(1)所求的线性回归方程确定单价定为多少元时,销售的利润最大?(结果四舍五入保留到整数)
附:线性回归方程中斜率和截距最小二乗法估计计算公式:,,,.
查看答案和解析>>
科目: 来源: 题型:
【题目】近年来,我国大力发展新能源汽车工业,新能源汽车(含电动汽车)销量已跃居全球首位.某电动汽车厂新开发了一款电动汽车.并对该电动汽车的电池使用情况进行了测试,其中剩余电量y与行驶时问 (单位:小时)的测试数据如下表:
(1)根据电池放电的特点,剩余电量y与行驶时间之间满足经验关系式:,通过散点图可以发现y与之间具有相关性.设,利用表格中的前8组数据求相关系数r,并判断是否有99%的把握认为与之间具有线性相关关系;(当相关系数r满足时,则认为有99%的把握认为两个变量具有线性相关关系)
(2)利用与的相关性及表格中前8组数据求出与之间的回归方程;(结果保留两位小数)
(3)如果剩余电量不足0.8,电池就需要充电.从表格中的10组数据中随机选出8组,设X表示需要充电的数据组数,求X的分布列及数学期望.
附:相关数据:.
表格中前8组数据的一些相关量:,,
相关公式:对于样本,其回归直线的斜率和戗距的最小二乘估计公式分别为:,
相关系数.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,①已知点,直线,动点P满足到点Q的距离与到直线的距离之比为.②已知点是圆上一个动点,线段HG的垂直平分线交GE于P.③点分别在轴,y轴上运动,且,动点P满足.
(1)在①,②,③这三个条件中任选一个,求动点P的轨迹C的方程;
(注:如果选择多个条件分别解答,按第一个解答计分)
(2)设圆上任意一点A处的切线交轨迹C于M,N两点,试判断以MN为直径的圆是否过定点?若过定点,求出该定点坐标.若不过定点,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】在如图所示的圆柱中,AB为圆的直径,是的两个三等分点,EA,FC,GB都是圆柱的母线.
(1)求证:平面ADE;
(2)设BC=1,已知直线AF与平面ACB所成的角为30°,求二面角A—FB—C的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com