科目: 来源: 题型:
【题目】某农场更新技术培育了一批新型的“盆栽果树”,这种“盆栽果树”将一改陆地栽植果树只在秋季结果的特性,能够一年四季都有花、四季都结果.现为了了解果树的结果情况,从该批果树中随机抽取了容量为120的样本,测量这些果树的高度(单位:厘米),经统计将所有数据分组后得到如图所示的频率分布直方图.
(1)求;
(2)已知所抽取的样本来自两个实验基地,规定高度不低于40厘米的果树为“优品盆栽”,
(i)请将图中列联表补充完整,并判断是否有的把握认为“优品盆栽”与
两个实验基地有关?
优品 | 非优品 | 合计 | |
| 60 | ||
| 20 | ||
合计 |
(ii)用样本数据来估计这批果树的生长情况,若从该农场培育的这批“盆栽果树”中随机抽取4棵,求其中“优品盆栽”的棵树的分布列和数学期望.
附:
.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列的前
项和为
,且满足
,
,设
,
.
(Ⅰ)求证:数列是等比数列;
(Ⅱ)若,
,求实数
的最小值;
(Ⅲ)当时,给出一个新数列
,其中
,设这个新数列的前
项和为
,若
可以写成
(
,
且
,
)的形式,则称
为“指数型和”.问
中的项是否存在“指数型和”,若存在,求出所有“指数型和”;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆C:经过定点
,其左右集点分别为
,
且
,过右焦
且与坐标轴不垂直的直线l与椭圈交于P,Q两点.
(1)求椭圆C的方程:
(2)若O为坐标原点,在线段上是否存在点
,使得以
,
为邻边的平行四边形是菱形?若存在,求出m的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,某街道居委会拟在地段的居民楼正南方向的空白地段
上建一个活动中心,其中
米.活动中心东西走向,与居民楼平行. 从东向西看活动中心的截面图的下部分是长方形
,上部分是以
为直径的半圆. 为了保证居民楼住户的采光要求,活动中心在与半圆相切的太阳光线照射下落在居民楼上的影长
不超过
米,其中该太阳光线与水平线的夹角
满足
.
(1)若设计米,
米,问能否保证上述采光要求?
(2)在保证上述采光要求的前提下,如何设计与
的长度,可使得活动中心的截面面积最大?(注:计算中
取3)
查看答案和解析>>
科目: 来源: 题型:
【题目】正四棱锥的底面正方形边长是3,
是在底面上的射影,
,
是
上的一点,过
且与
、
都平行的截面为五边形
.
(1)在图中作出截面,并写出作图过程;
(2)求该截面面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】向量集合,对于任意
,以及任意
,都有
,则称
为“
类集”,现有四个命题:
①若为“
类集”,则集合
也是“
类集”;
②若,
都是“
类集”,则集合
也是“
类集”;
③若都是“
类集”,则
也是“
类集”;
④若都是“
类集”,且交集非空,则
也是“
类集”.
其中正确的命题有________(填所有正确命题的序号)
查看答案和解析>>
科目: 来源: 题型:
【题目】以直角坐标系的原点为极点,x轴的非负半轴为极轴建立极坐标系,并且在两种坐标系中取相同的长度单位.若将曲线
(
为参数)上每一点的横坐标变为原来的
(纵坐标不变),然后将所得图象向右平移2个单位,再向上平移3个单位得到曲线C.直线l的极坐标方程为
.
(1)求曲线C的普通方程;
(2)设直线l与曲线C交于A,B两点,与x轴交于点P,线段AB的中点为M,求.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的中心在原点,左焦点
、右焦点
都在
轴上,点
是椭圆
上的动点,
的面积的最大值为
,在
轴上方使
成立的点
只有一个.
(1)求椭圆的方程;
(2)过点的两直线
,
分别与椭圆
交于点
,
和点
,
,且
,比较
与
的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com