科目: 来源: 题型:
【题目】某公司为研究某种图书每册的成本费y(单位:元)与印刷数量x(单位:千册)的关系,收集了一些数据并进行了初步处理,得到了下面的散点图及一些统计量的值.
表中,
(1)根据散点图判断:与哪一个模型更适合作为该图书每册的成本费y与印刷数量x的回归方程?(只要求给出判断,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程(结果精确到0.01);
(3)若该图书每册的定价为9.22元,则至少应该印刷多少册才能使销售利润不低于80000元?(假设能够全部售出,结果精确到1)
附:对于一组数据(ω1,v1),(ω2,v2),…,(ωn,vn),其回归直线的斜率和截距的最小二乘估计分别为,.
查看答案和解析>>
科目: 来源: 题型:
【题目】四棱锥中,PC⊥面ABCD,直角梯形ABCD中,∠B=∠C=90°,AB=4,CD=1,PC=2,点M在PB上且PB=4PM,PB与平面PCD所成角为60°.
(1)求证:面:
(2)求二面角的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知,下面结论正确的是( )
A.若,,且的最小值为π,则ω=2
B.存在ω∈(1,3),使得f(x)的图象向右平移个单位长度后得到的图象关于y轴对称
C.若f(x)在上恰有7个零点,则ω的取值范围是
D.若f(x)在上单调递增,则ω的取值范围是(0,]
查看答案和解析>>
科目: 来源: 题型:
【题目】《九章算术》中将底面为直角三角形且侧棱垂直于底面的三棱柱称为“堑堵”;底面为矩形,一条侧棱垂直于底面的四棱锥称之为“阳马”;四个面均为直角三角形的四面体称为“鳖膈”.如图在堑堵ABC-A1B1C1中,AC⊥BC,且AA1=AB=2.下列说法正确的是( )
A.四棱锥B-A1ACC1为“阳马”
B.四面体A1C1CB为“鳖膈”
C.四棱锥B-A1ACC1体积最大为
D.过A点分别作AE⊥A1B于点E,AF⊥A1C于点F,则EF⊥A1B
查看答案和解析>>
科目: 来源: 题型:
【题目】记数列的前项和为,若存在实数H,使得对任意的,都有,则称数列为“和有界数列”.下列说法正确的是( )
A.若是等差数列,且公差,则是“和有界数列”
B.若是等差数列,且是“和有界数列”,则公差
C.若是等比数列,且公比,则是“和有界数列”
D.若是等比数列,且是“和有界数列”,则的公比
查看答案和解析>>
科目: 来源: 题型:
【题目】CPI是居民消费价格指数的简称,是一个反映居民家庭一般所购买的消费品和服务项目价格水平变动情况的宏观经济指标.同比一般情况下是今年第n月与去年第n月比;环比,表示连续2个统计周期(比如连续两月)内的量的变化比.如图是根据国家统计局发布的2019年4月—2020年4月我国CPI涨跌幅数据绘制的折线图,根据该折线图,则下列说法正确的是( )
A.2020年1月CPI同比涨幅最大
B.2019年4月与同年12月相比较,4月CPI环比更大
C.2019年7月至12月,CPI一直增长
D.2020年1月至4月CPI只跌不涨
查看答案和解析>>
科目: 来源: 题型:
【题目】设点为平面直角坐标系中的一个动点(其中为坐标系原点),点到定点的距离比到直线的距离大1,动点的轨迹方程为.
(1)求曲线的方程;
(2)若过点的直线与曲线相交于、两点.
①若,求直线的直线方程;
②分别过点,作曲线的切线且交于点,是否存在以为圆心,以为半径的圆与经过点且垂直于直线的直线相交于、两点,求的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】某公司为了对某种商品进行合理定价,需了解该商品的月销售量(单位:万件)与月销售单价(单位:元/件)之间的关系,对近个月的月销售量和月销售单价数据进行了统计分析,得到一组检测数据如表所示:
月销售单价(元/件) | ||||||
月销售量(万件) |
(1)若用线性回归模型拟合与之间的关系,现有甲、乙、丙三位实习员工求得回归直线方程分别为:,和,其中有且仅有一位实习员工的计算结果是正确的.请结合统计学的相关知识,判断哪位实习员工的计算结果是正确的,并说明理由;
(2)若用模型拟合与之间的关系,可得回归方程为,经计算该模型和(1)中正确的线性回归模型的相关指数分别为和,请用说明哪个回归模型的拟合效果更好;
(3)已知该商品的月销售额为(单位:万元),利用(2)中的结果回答问题:当月销售单价为何值时,商品的月销售额预报值最大?(精确到)
参考数据:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com