相关习题
 0  265379  265387  265393  265397  265403  265405  265409  265415  265417  265423  265429  265433  265435  265439  265445  265447  265453  265457  265459  265463  265465  265469  265471  265473  265474  265475  265477  265478  265479  265481  265483  265487  265489  265493  265495  265499  265505  265507  265513  265517  265519  265523  265529  265535  265537  265543  265547  265549  265555  265559  265565  265573  266669 

科目: 来源: 题型:

【题目】某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O在水平线MN上,桥ABMN平行,为铅垂线(AB).经测量,左侧曲线AO上任一点DMN的距离()D的距离a()之间满足关系式;右侧曲线BO上任一点FMN的距离()F的距离b()之间满足关系式.已知点B的距离为40.

1)求桥AB的长度;

2)计划在谷底两侧建造平行于的桥墩CDEF,且CE80米,其中CEAB(不包括端点).桥墩EF每米造价k(万元)、桥墩CD每米造价(万元)(k>0).为多少米时,桥墩CDEF的总造价最低?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数的导函数.

(Ⅰ)当时,

i)求曲线在点处的切线方程;

ii)求函数的单调区间和极值;

(Ⅱ)当时,求证:对任意的,且,有

查看答案和解析>>

科目: 来源: 题型:

【题目】已知为等差数列,为等比数列,

(Ⅰ)求的通项公式;

(Ⅱ)记的前项和为,求证:

(Ⅲ)对任意的正整数,设求数列的前项和.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的一个顶点为,右焦点为,且,其中为原点.

(Ⅰ)求椭圆的方程;

(Ⅱ)已知点满足,点在椭圆上(异于椭圆的顶点),直线与以为圆心的圆相切于点,且为线段的中点.求直线的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱柱中,平面,点分别在棱和棱上,且为棱的中点.


(Ⅰ)求证:

(Ⅱ)求二面角的正弦值;

(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在新中国成立70周年国庆阅兵庆典中,众多群众在脸上贴着一颗红心,以此表达对祖国的热爱之情,在数学中,有多种方程都可以表示心型曲线,其中有著名的笛卡尔心型曲线,如图,在直角坐标系中,以原点O为极点,x轴正半轴为极轴建立极坐标系.图中的曲线就是笛卡尔心型曲线,其极坐标方程为),M为该曲线上的任意一点.

1)当时,求M点的极坐标;

2)将射线OM绕原点O逆时针旋转与该曲线相交于点N,求的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

若函数的最大值为3,求实数的值;

若当时,恒成立,求实数的取值范围;

是函数的两个零点,且,求证:

查看答案和解析>>

科目: 来源: 题型:

【题目】2019年春节期间,某超市准备举办一次有奖促销活动,若顾客一次消费达到400元则可参加一次抽奖活动,超市设计了两种抽奖方案.

方案一:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得60元的返金券,若抽到白球则获得20元的返金券,且顾客有放回地抽取3次.

方案二:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得80元的返金券,若抽到白球则未中奖,且顾客有放回地抽取3次.

(1)现有两位顾客均获得抽奖机会,且都按方案一抽奖,试求这两位顾客均获得180元返金券的概率;

(2)若某顾客获得抽奖机会.

①试分别计算他选择两种抽奖方案最终获得返金券的数学期望;

②为了吸引顾客消费,让顾客获得更多金额的返金券,该超市应选择哪一种抽奖方案进行促销活动?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在直三棱柱中,分别是中点,为线段上的一个动点.

1)证明:平面

2)当二面角的余弦值为时,证明:.

查看答案和解析>>

科目: 来源: 题型:

【题目】2020年春节突如其来的新型冠状病毒肺炎在湖北爆发,一方有难八方支援,全国各地的白衣天使走上战场的第一线,某医院抽调甲、乙两名医生,抽调三名护士支援武汉第一医院与第二医院,参加武汉疫情狙击战其中选一名护士与一名医生去第一医院,其它都在第二医院工作,则医生甲和护士被选在第一医院工作的概率为(

A.B.C.D.

查看答案和解析>>

同步练习册答案