科目: 来源: 题型:
【题目】在平面直角坐标系中,①已知点,直线:,动点满足到点的距离与到直线的距离之比为;②已知圆的方程为,直线为圆的切线,记点到直线的距离分别为,动点满足;③点,分别在轴,轴上运动,且,动点满足.
(1)在①,②,③这三个条件中任选一个,求动点的轨迹方程;
(2)记(1)中的轨迹为,经过点的直线交于,两点,若线段的垂直平分线与轴相交于点,求点纵坐标的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】网络购物已经成为人们的一种生活方式.某购物平台为了给顾客提供更好的购物体验,为入驻商家设置了积分制度,每笔购物完成后,买家可以根据物流情况、商品质量等因素对商家做出评价,评价分为好评、中评和差评平台规定商家有50天的试营业时间,期间只评价不积分,正式营业后,每个好评给商家计1分,中评计0分,差评计分,某商家在试营业期间随机抽取100单交易调查了其商品的物流情况以及买家的评价情况,分别制成了图1和图2.
(1)通常收件时间不超过四天认为是物流迅速,否则认为是物流迟缓;
请根据题目所给信息完成下面列联表,并判断能否有的把握认为“获得好评”与物流速度有关?
好评 | 中评或差评 | 合计 | |
物流迅速 | |||
物流迟缓 | 30 | ||
合计 |
(2)从正式营业开始,记商家在每笔交易中得到的评价得分为.该商家将试营业50天期间的成交情况制成了频数分布表(表1),以试营业期间成交单数的频率代替正式营业时成交单数发生的概率.
表1
成交单数 | 36 | 30 | 27 |
天数 | 10 | 20 | 20 |
(Ⅰ)求的分布列和数学期望;
(Ⅱ)平台规定,当积分超过10000分时,商家会获得“诚信商家”称号,请估计该商家从正式营业开始,1年内(365天)能否获得“诚信商家”称号
附:
参考数据:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目: 来源: 题型:
【题目】洛书,古称龟书,是阴阳五行术数之源,被世界公认为组合数学的鼻祖,它是中华民族对人类的伟大贡献之一.在古代传说中有神龟出于洛水,其甲壳上有图1:“以五居中,五方白圈皆阳数,四隅黑点为阴数”,这就是最早的三阶幻方,按照上述说法,将1到9这九个数字,填在如图2所示的九宫格里,九宫格的中间填5,四个角填偶数,其余位置填奇数.则每一横行、每一竖列以及两条对角线上3个数字的和都等于15的概率是( )
图1 图2
A.B.C.D.
查看答案和解析>>
科目: 来源: 题型:
【题目】古希腊数学家阿波罗尼奥斯发现:平面上到两定点,距离之比为常数且的点的轨迹是一个圆心在直线上的圆,该圆简称为阿氏圆.根据以上信息,解决下面的问题:如图,在长方体中,,点在棱上,,动点满足.若点在平面内运动,则点所形成的阿氏圆的半径为________;若点在长方体内部运动,为棱的中点,为的中点,则三棱锥的体积的最小值为___________.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在棱长为1的正方体中,为棱上的动点(点不与点,重合),过点作平面分别与棱,交于,两点,若,则下列说法正确的是( )
A.面
B.存在点,使得∥平面
C.存在点,使得点到平面的距离为
D.用过,,三点的平面去截正方体,得到的截面一定是梯形
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数,).在以坐标原点为极点、轴的非负半轴为极轴的极坐标系中,曲线的极坐标方程为.
(1)若点在直线上,求直线的极坐标方程;
(2)已知,若点在直线上,点在曲线上,且的最小值为,求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】函数f(x)=Asin(x+)(A>0,>0,0<<)的部分图象如图所示,又函数g(x)=f(x+).
(1)求函数g(x)的单调增区间;
(2)设ABC的内角ABC的对边分别为abc,又c=,且锐角C满足g(C)= -1,若sinB=2sinA,,求ABC的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】共享单车又称为小黄车,近年来逐渐走进了人们的生活,也成为减少空气污染,缓解城市交通压力的一种重要手段.为调查某地区居民对共享单车的使用情况,从该地区居民中按年龄用随机抽样的方式随机抽取了人进行问卷调查,得到这人对共享单车的评价得分统计填入茎叶图,如下所示(满分分):
(1)找出居民问卷得分的众数和中位数;
(2)请计算这位居民问卷的平均得分;
(3)若在成绩为分的居民中随机抽取人,求恰有人成绩超过分的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知双曲线: 的左、右焦点分别为, 为坐标原点, 是双曲线上在第一象限内的点,直线分别交双曲线左、右支于另一点, ,且,则双曲线的离心率为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com