相关习题
 0  265387  265395  265401  265405  265411  265413  265417  265423  265425  265431  265437  265441  265443  265447  265453  265455  265461  265465  265467  265471  265473  265477  265479  265481  265482  265483  265485  265486  265487  265489  265491  265495  265497  265501  265503  265507  265513  265515  265521  265525  265527  265531  265537  265543  265545  265551  265555  265557  265563  265567  265573  265581  266669 

科目: 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)若存在与函数的图象都相切的直线,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的离心率为,其左、右焦点分别为,点为坐标平面内的一点,且为坐标原点.

1)求椭圆的方程;

2)设为椭圆的左顶点,是椭圆上两个不同的点,直线的倾斜角分别为,且.证明:直线恒过定点,并求出该定点的坐标,

查看答案和解析>>

科目: 来源: 题型:

【题目】为了响应绿色出行,某市推出了新能源分时租赁汽车,并对该市市民使用新能源租赁汽车的态度进行调查,得到有关数据如下表1

1

愿意使用新能源租赁汽车

不愿意使用新能源租赁汽车

总计

男性

100

300

女性

400

总计

400

其中一款新能源分时租赁汽车的每次租车费用由行驶里程和用车时间两部分构成:行驶里程按1/公里计费;用车时间不超过30分钟时,按0.15/分钟计费;超过30分钟时,超出部分按0.20/分钟计费.已知张先生从家到上班地点15公里,每天上班租用该款汽车一次,每次的用车时间均在20~60分钟之间,由于堵车红绿灯等因素,每次的用车时间(分钟)是一个随机变量.张先生记录了100次的上班用车时间,并统计出在不同时间段内的频数如下表2

2

时间(分钟)

2030]

3040]

4050]

5060]

频数

20

40

30

10

1)请补填表1中的空缺数据,并判断是否有99.5%的把握认为该市市民对新能源租赁汽车的使用态度与性别有关;

2)根据表2中的数据,将各时间段发生的频率视为概率,以各时间段的区间中点值代表该时间段的取值,试估计张先生租用一次该款汽车上班的平均用车时间;

3)若张先生使用滴滴打车上班,则需要车费27元,试问:张先生上班使用滴滴打车和租用该款汽车,哪一种更合算?

附:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】如图①,在中,为直角,,沿折起,使,得到如图②的几何体,点在线段.

1)求证:平面平面

2)若平面,求直线与平面所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在①,②,③这三个条件中选择两个,补充在下面问题中,并给出解答.已知数列的前项和为,满足________________;又知正项等差数列满足,且成等比数列.

1)求的通项公式;

2)证明:.

查看答案和解析>>

科目: 来源: 题型:

【题目】某学校数学建模小组为了研究双层玻璃窗户中每层玻璃厚度(每层玻璃的厚度相同)及两层玻璃间夹空气层厚度对保温效果的影响,利用热传导定律得到热传导量满足关系式,其中玻璃的热传导系数焦耳/(厘米·度),不流通、干燥空气的热传导系数焦耳/(厘米·度),为室内外温度差,值越小,保温效果越好,现有4种型号的双层玻璃窗户,具体数据如下表:

型号

每层玻璃厚度(单位:厘米)

玻璃间夹空气层厚度(单位:厘米)

0.4

3

0.3

4

0.5

3

0.4

4

则保温效果最好的双层玻璃的型号是(

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)求曲线处的切线方程,并证明:.

2)当时,方程有两个不同的实数根,证明:.

查看答案和解析>>

科目: 来源: 题型:

【题目】某车间用一台包装机包装葡萄糖,每袋葡萄糖的重量是一个随机变量,它服从正态分布.当机器工作正常时,每袋葡萄糖平均重量0.5kg,标准差0.015kg.

1)已知包装每袋葡萄糖的成本为1元,若发现包装好的葡萄糖重量异常,则需要将该袋葡萄糖进行重新包装,假设重新包装后的葡萄糖重量正常.若某袋葡萄糖的重量满足,则认为该袋葡萄糖重量正常. 问:在机器工作正常的情况下,至少包装多少袋葡萄糖才能使至少有一袋包装好的葡萄糖重量正常的概率大于0.98?并求出相应成本的最小期望值.

2)某日开工后, 为检査该包装机工作是否正常, 随机地抽取它所包装的葡萄糖9袋,若抽取的9袋葡萄糖称得净重(kg)为:0.496 0.508 0.524 0.519 0.495 0.510 0.522 0.513 0.512.用样本平均数作为的估计值,以作为检验统计量,其中为样本总数,服从正态分布,且.

①若机器工作正常时, 每袋葡萄糖的重量服从的正态分布曲线如下图所示,且经计算得上述样本数据的标准差0.022.请在下图(机器正常工作时的正态分布曲线)中,绘制出以该样本作为估计得到的每袋葡萄糖所服从的正态分布曲线的草图.

②若,就推断该包装机工作异常,这种推断犯错误的概率不超过,试以95%的可靠性估计该包装机工作是否正常.

附: 若随机变量服从正态分布:

参考数据:

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在直四棱柱中,分别为的中点,

1)证明:平面.

2)求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案