科目: 来源: 题型:
【题目】设是无穷数列,若存在正整数k,使得对任意,均有,则称是间隔递增数列,k是的间隔数,下列说法正确的是( )
A.公比大于1的等比数列一定是间隔递增数列
B.已知,则是间隔递增数列
C.已知,则是间隔递增数列且最小间隔数是2
D.已知,若是间隔递增数列且最小间隔数是3,则
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在棱长为1的正方体中,P为线段上的动点,下列说法正确的是( )
A.对任意点P,平面
B.三棱锥的体积为
C.线段DP长度的最小值为
D.存在点P,使得DP与平面所成角的大小为
查看答案和解析>>
科目: 来源: 题型:
【题目】台球运动已有五、六百年的历史,参与者用球杆在台上击球.若和光线一样,台球在球台上碰到障碍物后也遵从反射定律如图,有一张长方形球台ABCD,,现从角落A沿角的方向把球打出去,球经2次碰撞球台内沿后进入角落C的球袋中,则的值为( )
A.B.C.1D.
查看答案和解析>>
科目: 来源: 题型:
【题目】2020年4月8日,武汉市雷神山医院为确诊新型冠状病毒肺炎患者,需要检测核酸是否为阳性,现有份核酸样本,有以下两种检测方式:(1)逐份检测,则需要检测次;(2)混合检测,将其中(,且)份核酸样本分别取样混合在一起检测,若检测结果为阴性,这份核酸样本全为阴性,因而这份核酸样本只要检测一次就够了,如果检测结果为阳性,为了明确这份核酸样本究竟哪几份为阳性,就要对这份样本再逐份检测,此时这份核酸样本的检测次数总共为次.假设在接受检测的核酸样本中,每份样本的检测结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为.
(1)假设有5份核酸样本,其中只有2份样本为阳性,若采用逐份检测方式,求恰好经过4次检测就能把阳性样本全部检测出来的概率.
(2)现取其中(,且)份核酸样本,记采用逐份检测方式,样本需要检测的总次数为,采用混合检测方式,样本需要检测的总次数为.
①试运用概率统计的知识,若,试求关于的函数关系式;
②若,用混合检测方式可以使得样本需要检测的总次数的期望值比逐份检测的总次数期望值更少,求的最大值.
参考数据:
查看答案和解析>>
科目: 来源: 题型:
【题目】椭圆的左、右焦点分别为,离心率为,过焦点且垂直于轴的直线被椭圆截得的线段长为.
(Ⅰ)求椭圆的方程;
(Ⅱ)点为椭圆上一动点,连接、,设的角平分线交椭圆的长轴于点,求实数的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】在等差数列中,已知.在①,②,③这三个条件中任选一个补充在第(2)问中,并对其求解.
(1)求数列的通项公式;
(2)若___________,求数列的前项和.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知参加某项活动的六名成员排成一排合影留念,且甲乙两人均在丙领导人的同侧,则不同的排法共有( )
A. 240种 B. 360种 C. 480种 D. 600种
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在矩形中,为边的中点,将沿直线翻转成(平面).若分别为线段的中点,则在翻转过程中,下列说法正确的是( )
A.与平面垂直的直线必与直线垂直
B.异面直线与所成的角是定值
C.一定存在某个位置,使
D.三棱锥外接球半径与棱的长之比为定值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com