科目: 来源: 题型:
【题目】2020年春节前后,一场突如其来的新冠肺炎疫情在全国蔓延.疫情就是命令,防控就是责任.在党中央的坚强领导和统一指挥下,全国人民众志成城、团结一心,掀起了一场坚决打赢疫情防控阻击战的人民战争.下侧的图表展示了2月14日至29日全国新冠肺炎疫情变化情况,根据该折线图,下列结论正确的是( )
A.16天中每日新增确诊病例数量呈下降趋势且19日的降幅最大
B.16天中每日新增确诊病例的中位数大于新增疑似病例的中位数
C.16天中新增确诊、新增疑似、新增治愈病例的极差均大于
D.19日至29日每日新增治愈病例数量均大于新增确诊与新增疑似病例之和
查看答案和解析>>
科目: 来源: 题型:
【题目】已知曲线C的极坐标方程是ρsin2θ-8cosθ=0.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系xOy.在直角坐标系中,倾斜角为α的直线l过点P(2,0).
(1)写出曲线C的直角坐标方程和直线l的参数方程;
(2)设点Q与点G的极坐标分别为,(2,π),若直线l经过点Q,且与曲线C相交于A,B两点,求△GAB的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】(本小题满分14分)已知过原点的动直线与圆 相交于不同的两点,.
(1)求圆的圆心坐标;
(2)求线段的中点的轨迹的方程;
(3)是否存在实数,使得直线 与曲线只有一个交点?若存在,求出的取值范围;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】2019年下半年以来,各地区陆续出台了“垃圾分类”的相关管理条例,实行“垃圾分类”能最大限度地减少垃圾处置量,实现垃圾资源利用,改善生存环境质量.某部门在某小区年龄处于区间内的人中随机抽取人进行了“垃圾分类”相关知识掌握和实施情况的调查,并把达到“垃圾分类”标准的人称为“环保族”,得到图各年龄段人数的频率分布直方图和表中统计数据.
(1)求的值;
(2)根据频率分布直方图,估计这人年龄的平均值(同一组数据用该组区间的中点值代替,结果保留整数);
(3)从年龄段在的“环保族”中采用分层抽样的方法抽取9人进行专访,并在这9人中选取2人作为记录员,求选取的2名记录员中至少有一人年龄在区间中的概率.
组数 | 分组 | “环保族”人数 | 占本组频率 |
第一组 | 45 | 0.75 | |
第二组 | 25 | ||
第三组 | 0.5 | ||
第四组 | 3 | 0.2 | |
第五组 | 3 | 0.1 |
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=(2﹣a)(x﹣1)﹣2lnx,g(x)= (a∈R,e为自然对数的底数)
(Ⅰ)当a=1时,求f(x)的单调区间;
(Ⅱ)若函数f(x)在 上无零点,求a的最小值;
(Ⅲ)若对任意给定的x0∈(0,e],在(0,e]上总存在两个不同的xi(i=1,2),使得f(xi)=g(x0)成立,求a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆,以椭圆的顶点为顶点的四边形的面积为,且该四边形内切圆的半径为.
(1)求椭圆的方程;
(2)设是过椭圆中心的任意一条弦,直线是线段的垂直平分线,若是直线与椭圆的一个交点,求面积的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图:在直三棱柱中,,,是棱上一点,是的延长线与的延长线的交点,且平面.
(1)求证:;
(2)求二面角的正弦值;
(3)若点在线段上,且直线与平面所成的角的正弦值为,求线段的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com