科目: 来源: 题型:
【题目】某地拟建造一座体育馆,其设计方案侧面的外轮廓线如图所示:曲线是以点为圆心的圆的一部分,其中,是圆的切线,且,曲线是抛物线的一部分,,且恰好等于圆的半径.
(1)若米,米,求与的值;
(2)若体育馆侧面的最大宽度不超过75米,求的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】某互联网公司为了确定下一季度的前期广告投入计划,收集了近个月广告投入量(单位:万元)和收益(单位:万元)的数据如下表:
月份 | ||||||
广告投入量 | ||||||
收益 |
他们分别用两种模型①,②分别进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图及一些统计量的值:
(Ⅰ)根据残差图,比较模型①,②的拟合效果,应选择哪个模型?并说明理由;
(Ⅱ)残差绝对值大于的数据被认为是异常数据,需要剔除:
(ⅰ)剔除异常数据后求出(Ⅰ)中所选模型的回归方程
(ⅱ)若广告投入量时,该模型收益的预报值是多少?
附:对于一组数据,,……,,其回归直线的斜率和截距的最小二乘估计分别为:
,.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列说法正确的个数是( )
①命题“若,则,中至少有一个不小于2”的逆命题是真命题
②命题“设,若,则或”是一个真命题
③“,”的否定是“,”
④已知,都是实数,“”是“”的充分不必要条件
A.1B.2C.3D.4
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数在区间上的最大值为9,最小值为1,记
(1)求实数,的值;
(2)若不等式成立,求实数的取值范围;
(3)定义在上的函数,设,将区间任意划分成个小区间,如果存在一个常数,使得和式恒成立,则称函数为在上的有界变差函数.试判断函数是否为在上的有界变差函数?若是,求的最小值;若不是,请说明理由(表示)
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系内,动点到定点的距离与到定直线的距离之比为
(1)求动点的轨迹的方程;
(2)若轨迹上的动点到定点的距离的最小值为1,求的值;
(3)设点、是轨迹上两个动点,直线、与轨迹的另一交点分别为、,且直线、的斜率之积等于,问四边形的面积是否为定值?请说明理由
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,一个质点在第一象限运动,第一秒钟内它由原点移动到,而后它接着按图所示在与轴、轴平行的方向运动,且每秒移动一个单位长度,那么2018秒后,这个质点所处的位置的坐标是________.
查看答案和解析>>
科目: 来源: 题型:
【题目】五位同学各自制作了一张贺卡,分别装入5个空白信封内,这五位同学每人随机地抽取一封,则恰好有两人抽取到的贺卡是其本人制作的概率是______________.
查看答案和解析>>
科目: 来源: 题型:
【题目】设椭圆过点,且直线过的左焦点.
(1)求的方程;
(2)设为上的任一点,记动点的轨迹为,与轴的负半轴、轴的正半轴分别交于点,的短轴端点关于直线的对称点分别为、,当点在直线上运动时,求的最小值;
(3)如图,直线经过的右焦点,并交于两点,且在直线上的射影依次为,当绕转动时,直线与是否相交于定点?若是,求出定点的坐标,否则,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com