相关习题
 0  265452  265460  265466  265470  265476  265478  265482  265488  265490  265496  265502  265506  265508  265512  265518  265520  265526  265530  265532  265536  265538  265542  265544  265546  265547  265548  265550  265551  265552  265554  265556  265560  265562  265566  265568  265572  265578  265580  265586  265590  265592  265596  265602  265608  265610  265616  265620  265622  265628  265632  265638  265646  266669 

科目: 来源: 题型:

【题目】已知是数列的前项和,对任意,都有

1)若,求证:数列是等差数列,并求此时数列的通项公式;

2)若,求证:数列是等比数列,并求此时数列的通项公式;

3)设,若,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知为椭圆)和双曲线的公共顶点,分为双曲线和椭圆上不同于的动点,且满足,设直线的斜率分别为.

1)求证:点三点共线;

2)求的值;

3)若分别为椭圆和双曲线的右焦点,且,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知,函数.

1)设,若是奇函数,求的值;

2)设,判断函数上的单调性并加以证明;

3)设,函数的图象是否关于某垂直于轴的直线对称?如果是,求出该对称轴,如果不是,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,空间直角坐标系中,四棱锥的底面是边长为的正方形,且底面在平面内,点轴正半轴上,平面,侧棱与底面所成角为45°

1)若是顶点在原点,且过两点的抛物线上的动点,试给出满足的关系式;

2)若是棱上的一个定点,它到平面的距离为),写出两点之间的距离,并求的最小值;

3)是否存在一个实数),使得当取得最小值时,异面直线互相垂直?请说明理由;

查看答案和解析>>

科目: 来源: 题型:

【题目】有一容积为的正方体容器,在棱和面对角线的中点各有一小孔,若此容器可以任意放置,则其可装水的最大容积是(

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为,其中为参数,.在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线的极坐标方程为.

1)求直线的直角坐标方程与曲线的普通方程;

2)若是曲线上的动点,为线段的中点.求点到直线的距离的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知.

1)试讨论函数的单调性;

2)若使得都有恒成立,且,求满足条件的实数的取值集合.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥ABCD中,都是等边三角形,平面PAD平面ABCD,且

1)求证:CDPA

2EF分别是棱PAAD上的点,当平面BEF//平面PCD时,求四棱锥的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的两个焦点分别为,长轴长为

)求椭圆的标准方程及离心率;

)过点的直线与椭圆交于两点,若点满足,求证:由点 构成的曲线关于直线对称.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)求证:对任意实数,都有

(2)若,是否存在整数,使得在上,恒有成立?若存在,请求出的最大值;若不存在,请说明理由.(

查看答案和解析>>

同步练习册答案