相关习题
 0  265455  265463  265469  265473  265479  265481  265485  265491  265493  265499  265505  265509  265511  265515  265521  265523  265529  265533  265535  265539  265541  265545  265547  265549  265550  265551  265553  265554  265555  265557  265559  265563  265565  265569  265571  265575  265581  265583  265589  265593  265595  265599  265605  265611  265613  265619  265623  265625  265631  265635  265641  265649  266669 

科目: 来源: 题型:

【题目】1)设椭圆与双曲线有相同的焦点是椭圆与双曲线的公共点,且△的周长为6,求椭圆的方程;我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为盾圆

2)如图,已知盾圆的方程为,设盾圆上的任意一点的距离为到直线的距离为,求证:为定值;

3)由抛物线弧)与第(1)小题椭圆弧)所合成的封闭曲线为盾圆,设过点的直线与盾圆交于两点,,且),试用表示,并求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】某国际性会议纪念章的一特许专营店销售纪念章,每枚进价为5元,同时每销售一枚这种纪念章还需向该会议的组织委员会交特许经营管理费2元,预计这种纪念章以每枚20元的价格销售时,该店一年可销售2000枚,经过市场调研发现,每枚纪念章的销售价格在每枚20元的基础上,每减少一元则增加销售400枚,而每增加一元则减少销售100枚,现设每枚纪念章的销售价格为元(每枚的销售价格应为正整数).

1)写出该特许专营店一年内销售这种纪念章所获得的利润(元)与每枚纪念章的销售价格的函数关系式;

2)当每枚纪念章销售价格为多少元时,该特许专营店一年内利润(元)最大,并求出这个最大值;

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)判断函数在区间上零点的个数;

2)函数在区间上的极值点从小到大分别为,证明:

(Ⅰ)

(Ⅱ)对一切成立.

查看答案和解析>>

科目: 来源: 题型:

【题目】某汽车公司最近研发了一款新能源汽车,并在出厂前对100辆汽车进行了单次最大续航里程的测试。现对测试数据进行分析,得到如图所示的频率分布直方图:

1)估计这100辆汽车的单次最大续航里程的平均值(同一组中的数据用该组区间的中点值代表).

2)根据大量的汽车测试数据,可以认为这款汽车的单次最大续航里程近似地服从正态分布,经计算第(1)问中样本标准差的近似值为50。用样本平均数作为的近似值,用样本标准差作为的估计值,现任取一辆汽车,求它的单次最大续航里程恰在250千米到400千米之间的概率.

参考数据:若随机变量服从正态分布,则.

3)某汽车销售公司为推广此款新能源汽车,现面向意向客户推出“玩游戏,送大奖”活动,客户可根据抛掷硬币的结果,操控微型遥控车在方格图上行进,若遥控车最终停在“胜利大本营”,则可获得购车优惠券3万元。已知硬币出现正、反面的概率都是0.5方格图上标有第0格、第1格、第2格、…、第20格。遥控车开始在第0格,客户每掷一次硬币,遥控车向前移动一次。若掷出正面,遥控车向前移动一格(从)若掷出反面遥控车向前移动两格(从),直到遥控车移到第19格胜利大本营)或第20格(失败大本营)时,游戏结束。设遥控车移到第格的概率为P试证明是等比数列,并求参与游戏一次的顾客获得优惠券金额的期望值。

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的离心率为其右顶点为,下顶点为,定点的面积为过点作与轴不重合的直线交椭圆两点,直线分别与轴交于两点.

1)求椭圆的方程;

2)试探究的横坐标的乘积是否为定值,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知四棱锥中,侧面底面是边长为2的正三角形底面是菱形,点的中点

1)求证:平面

2)求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】下列说法正确的个数是( )

①命题“若,则中至少有一个不小于2”的逆命题是真命题

②命题“设,若,则”是一个真命题

③“的否定是“

④已知都是实数,“”是“”的充分不必要条件

A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:

【题目】201935日,国务院总理李克强作出的政府工作报告中,提到要惩戒学术不端,力戒学术不端,力戒浮躁之风.教育部2014年印发的《学术论文抽检办法》通知中规定:每篇抽检的学术论文送3位同行专家进行评议,3位专家中有2位以上(含3位)专家评议意见为不合格的学术论文,将认定为存在问题学术论文.有且只有1位专家评议意见为不合格的学术论文,将再送另外2位同行专家(不同于前3位专家)进行复评,2位复评专家中有1位以上(含1位)专家评议意见为不合格的学术论文,将认定为存在问题学术论文.设每篇学术论文被每位专家评议为不合格的概率均为,且各篇学术论文是否被评议为不合格相互独立.

1)若,求抽检一篇学术论文,被认定为存在问题学术论文的概率;

2)现拟定每篇抽检论文不需要复评的评审费用为900元,需要复评的总评审费用1500元;若某次评审抽检论文总数为3000篇,求该次评审费用期望的最大值及对应的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,已知曲线上的动点到点的距离与到直线的距离相等.

1)求曲线的轨迹方程;

2)过点分别作射线交曲线于不同的两点,且.试探究直线是否过定点?如果是,请求出该定点;如果不是,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】对于函数y=f(x),xD,若存在闭区间[ab]和常数C,使得对任意x[ab]都有f(x)=C,称f(x)桥函数”.

1)作出函数的图象,并说明f(x)是否为桥函数?(不必证明)

2)设f(x)定义域为R,判断f(x)为奇函数桥函数’”的什么条件?给出你的结论并说明理由;

3)若函数桥函数,求常数mn的值.

查看答案和解析>>

同步练习册答案