相关习题
 0  265468  265476  265482  265486  265492  265494  265498  265504  265506  265512  265518  265522  265524  265528  265534  265536  265542  265546  265548  265552  265554  265558  265560  265562  265563  265564  265566  265567  265568  265570  265572  265576  265578  265582  265584  265588  265594  265596  265602  265606  265608  265612  265618  265624  265626  265632  265636  265638  265644  265648  265654  265662  266669 

科目: 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数).以坐标原点为极点,轴的非负半轴建立极坐标系,点的极坐标,曲线的极坐标方程为

(1)求直线的普通方程和曲线的直角坐标方程;

(2)若为曲线上的动点,求中点到直线的距离最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的离心率为,焦点分别为,点是椭圆上的点,面积的最大值是

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线与椭圆交于两点,点是椭圆上的点,是坐标原点,若判定四边形的面积是否为定值?若为定值,求出定值;如果不是,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】设双曲线 的左右焦点分别为,过的直线分别交双曲线左右两支于点MN.若以MN为直径的圆经过点,则双曲线的离心率为(

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】定义在上的函数,如果存在函数为常数),使得对一切实数都成立则称为函数的一个承托函数.现有如下函数:①;②;③;④.则存在承托函数的的序号为______.(填入满足题意的所有序号)

查看答案和解析>>

科目: 来源: 题型:

【题目】某区在2019年教师招聘考试中,参加四个岗位的应聘人数、录用人数和录用比例(精确到1%)如下:

岗位

男性应聘人数

男性录用人数

男性录用比例

女性应聘人数

女性录用人数

女性录用比例

269

167

62%

40

24

60%

217

69

32%

386

121

31%

44

26

59%

38

22

58%

3

2

67%

3

2

67%

总计

533

264

50%

467

169

36%

1)从表中所有应聘人员中随机抽取1人,试估计此人被录用的概率;

2)将应聘岗位的男性教师记为,女性教师记为,现从应聘岗位的6人中随机抽取2.

i)试用所给字母列举出所有可能的抽取结果;

ii)设为事件抽取的2人性别不同,求事件发生的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的离心率为,椭圆经过点.

(1)求椭圆的标准方程;

(2)设点是椭圆上的任意一点,射线与椭圆交于点,过点的直线与椭圆有且只有一个公共点,直线与椭圆交于两个相异点,证明:面积为定值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,圆,圆.以坐标原点为极点,轴的正半轴为极轴建立极坐标系.

(1)求圆的极坐标方程;

(2)设分别为上的点,若为等边三角形,求.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知四边形ABCD为边长等于的正方形,PA⊥平面ABCDQCPA,且异面直线QDPA所成的角为30°,则四棱锥QABCD外接球的表面积等于( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】2018年1月31日晚上月全食的过程分为初亏、食既、食甚、生光、复圆五个阶段,月食的初亏发生在19时48分,20时51分食既,食甚时刻为21时31分,22时08分生光,直至23时12分复圆.全食伴随有蓝月亮和红月亮,全食阶段的“红月亮”将在食甚时刻开始,生光时刻结東,一市民准备在19:55至21:56之间的某个时刻欣赏月全食,则他等待“红月亮”的时间不超过30分钟的概率是( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

(1)求函数的极值;

(2)设函数.若存在区间,使得函数上的值域为,求实数的取值范围.

查看答案和解析>>

同步练习册答案