相关习题
 0  265483  265491  265497  265501  265507  265509  265513  265519  265521  265527  265533  265537  265539  265543  265549  265551  265557  265561  265563  265567  265569  265573  265575  265577  265578  265579  265581  265582  265583  265585  265587  265591  265593  265597  265599  265603  265609  265611  265617  265621  265623  265627  265633  265639  265641  265647  265651  265653  265659  265663  265669  265677  266669 

科目: 来源: 题型:

【题目】已知数列的前n项和为

1)若,求证:,其中

2)若对任意均有,求的通项公式;

3)若对任意均有,求证:

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆是它的上顶点,点各不相同且均在椭圆上.

1)若恰为椭圆长轴的两个端点,求的面积;

2)若,求证:直线过一定点;

3)若的外接圆半径为,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】用一个半径为12厘米圆心角为的扇形纸片PAD卷成一个侧面积最大的无底圆锥(接口不用考虑损失),放于水平面上.

1)无底圆锥被一阵风吹倒后(如图1),求它的最高点到水平面的距离;

2)扇形纸片PAD上(如图2),C是弧AD的中点,B是弧AC的中点,卷成无底圆锥后,求异面直线PABC所成角的大小.

查看答案和解析>>

科目: 来源: 题型:

【题目】某次电影展,有14部参赛影片,组委会分两天在某一影院播映这14部电影,每天7部,其中有24D电影要求不在同一天放映,下列不能作为排片方案数的计算式的是(

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为2的菱形,,平面平面,点为棱的中点.

(Ⅰ)在棱上是否存在一点,使得平面,并说明理由;

(Ⅱ)当二面角的余弦值为时,求直线与平面所成的角.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知点是圆上的一动点,点,点在线段上,且满足.

(1)求点的轨迹的方程;

(2)设曲线轴的正半轴,轴的正半轴的交点分别为点,斜率为的动直线交曲线两点,其中点在第一象限,求四边形面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

(1)求函数的单调区间及极值;

(2)时,存在,使方程成立,求实数的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,点是曲线上的动点,点的延长线上,且,点的轨迹为

(1)求直线及曲线的极坐标方程;

(2)若射线与直线交于点,与曲线交于点(与原点不重合),求的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】朱载堉(1536—1611),明太祖九世孙,音乐家、数学家、天文历算家,在他多达百万字的著述中以《乐律全书》最为著名,在西方人眼中他是大百科全书式的学者王子。他对文艺的最大贡献是他创建了“十二平均律”,此理论被广泛应用在世界各国的键盘乐器上,包括钢琴,故朱载堉被誉为“钢琴理论的鼻祖”。“十二平均律”是指一个八度有13个音,相邻两个音之间的频率之比相等,且最后一个音频率是最初那个音频率的2倍,设第二个音的频率为,第八个音的频率为,则等于( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】为奇函数,a为常数.

1)求a的值;

2)判断函数时单调性并证明;

3)若对于区间上的每一个x的值,不等式恒成立,求m取值范围.

查看答案和解析>>

同步练习册答案