相关习题
 0  265496  265504  265510  265514  265520  265522  265526  265532  265534  265540  265546  265550  265552  265556  265562  265564  265570  265574  265576  265580  265582  265586  265588  265590  265591  265592  265594  265595  265596  265598  265600  265604  265606  265610  265612  265616  265622  265624  265630  265634  265636  265640  265646  265652  265654  265660  265664  265666  265672  265676  265682  265690  266669 

科目: 来源: 题型:

【题目】已知圆Cx2+(y-1)2=5,直线lmxy+1-m=0(mR).

(1)判断直线l与圆C的位置关系;

(2)设直线l与圆C交于AB两点,若直线l的倾斜角为120°,求弦AB的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数fx)=xlnx

1)求函数fx)过(﹣1,﹣2)的切线的方程

2)过点P1t)存在两条直线与曲线yfx)相切,求t的取值范围

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数fx)=exlnx+axaR).

1)当a=﹣e+1时,求函数fx)的单调区间;

2)当a≥﹣1时,求证:fx)>0

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数fx,若函数fx)的值域为R,则实数a的取值范围是_____

查看答案和解析>>

科目: 来源: 题型:

【题目】东方商店欲购进某种食品(保质期两天),此商店每两天购进该食品一次(购进时,该食品为刚生产的).根据市场调查,该食品每份进价元,售价元,如果两天内无法售出,则食品过期作废,且两天内的销售情况互不影响,为了了解市场的需求情况,现统计该产品在本地区天的销售量如下表:

(视样本频率为概率)

(1)根据该产品天的销售量统计表,记两天中一共销售该食品份数为,求的分布列与期望

(2)以两天内该产品所获得的利润期望为决策依据,东方商店一次性购进份,哪一种得到的利润更大?

查看答案和解析>>

科目: 来源: 题型:

【题目】2021年我省将实施新高考,新高考“依据统一高考成绩、高中学业水平考试成绩,参考高中学生综合素质评价信息”进行人才选拔。我校2018级高一年级一个学习兴趣小组进行社会实践活动,决定对某商场销售的商品A进行市场销售量调研,通过对该商品一个阶段的调研得知,发现该商品每日的销售量(单位:百件)与销售价格(元/件)近似满足关系式,其中为常数已知销售价格为3元/件时,每日可售出该商品10百件

(1)求函数的解析式;

(2)若该商品A的成本为2元/件,根据调研结果请你试确定该商品销售价格的值,使该商场每日销售该商品所获得的利润(单位:百元)最大。

查看答案和解析>>

科目: 来源: 题型:

【题目】已知三个内角所对的边分别是,若.

1)求角

2)若的外接圆半径为2,求周长的最大值.

【答案】(1) ;(2) .

【解析】试题分析:(1由正弦定理将边角关系化为边的关系,再根据余弦定理求角,(2先根据正弦定理求边,用角表示周长,根据两角和正弦公式以及配角公式化为基本三角函数,最后根据正弦函数性质求最大值.

试题解析:1)由正弦定理得

,∴,即

因为,则.

(2)由正弦定理

∴周长

∴当

∴当 周长的最大值为.

型】解答
束】
18

【题目】经调查,3个成年人中就有一个高血压,那么什么是高血压?血压多少是正常的?经国际卫生组织对大量不同年龄的人群进行血压调查,得出随年龄变化,收缩压的正常值变化情况如下表:

其中:

(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(的值精确到0.01)

(3)若规定,一个人的收缩压为标准值的0.9~1.06倍,则为血压正常人群;收缩压为标准值的1.06~1.12倍,则为轻度高血压人群;收缩压为标准值的1.12~1.20倍,则为中度高血压人群;收缩压为标准值的1.20倍及以上,则为高度高血压人群.一位收缩压为180mmHg的70岁的老人,属于哪类人群?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知在平面直角坐标系中,圆的参数方程为为参数).以原点为极点,轴的非负半轴为极轴,取相同的单位长度建立极坐标系.

1)求圆的普通方程及其极坐标方程;

2)设直线的极坐标方程为,射线与圆的交点为(异于极点),与直线的交点为,求线段的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的左右焦点分别为,点是椭圆的左右顶点,点是椭圆上一动点,的周长为6,且直线的斜率之积为

1)求椭圆的方程;

2)若为椭圆上位于轴同侧的两点,且,求四边形面积的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】有两种理财产品,投资这两种理财产品一年后盈亏的情况如下(每种理财产品的不同投资结果之间相互独立):

产品

投资结果

获利

不赔不赚

亏损

概率

产品

投资结果

获利

不赔不赚

亏损

概率

注:

1)若甲、乙两人分别选择了产品投资,一年后他们中至少有一人获利的概率大于,求实数的取值范围;

2)若丙要将20万元人民币投资其中一种产品,以一年后的投资收益的期望值为决策依据,则丙选择哪种产品投资较为理想.

查看答案和解析>>

同步练习册答案