相关习题
 0  265519  265527  265533  265537  265543  265545  265549  265555  265557  265563  265569  265573  265575  265579  265585  265587  265593  265597  265599  265603  265605  265609  265611  265613  265614  265615  265617  265618  265619  265621  265623  265627  265629  265633  265635  265639  265645  265647  265653  265657  265659  265663  265669  265675  265677  265683  265687  265689  265695  265699  265705  265713  266669 

科目: 来源: 题型:

【题目】已知抛物线的焦点为为抛物线上不重合的两动点,为坐标原点,,过作抛物线的切线,直线交于点

1)求抛物线的方程;

2)问:直线是否过定点,若是,求出定点坐标,若不是,说明理由;

3)三角形的面积是否存在最小值,若存在,请求出最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在四棱锥中,平面平面为等边三角形,,点的中点.

1)求证:平面PAD

2)求二面角PBCD的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置.若指针停在A区域返券60元;停在B区域返券30元;停在C区域不返券.例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.

1)若某位顾客消费128元,求返券金额不低于30元的概率;

2)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为(元).求随机变量的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,分别过椭圆左、右焦点的动直线相交于点,与椭圆分别交于不同四点,直线的斜率满足, 已知轴重合时, .

1)求椭圆的方程;

2)是否存在定点使得为定值,若存在,求出点坐标并求出此定值,若不存在,

说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在梯形中,,四边形为矩形,平面平面.

(1)证明:平面

(2)设点在线段上运动,平面与平面所成锐二面角为,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,倾斜角为的直线的参数方程为为参数).在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线的极坐标方程为.

(1)求直线的普通方程与曲线的直角坐标方程;

(2)若直线与曲线交于两点,且,求直线的倾斜角.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)若关于的方程有唯一实数解,且,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】为落实国家扶贫攻坚政策,某社区应上级扶贫办的要求,对本社区所有扶贫户每年年底进行收入统计,下表是该社区扶贫户中户从2016年至2019年的收入统计数据:(其中贫困户的人均年纯收人)

年份

2016

2017

2018

2019

年份代码

人均纯收入(百元)

(1)作出贫困户的人均年纯收人的散点图;

(2)根据上表数据,用最小二乘法求出关于年份代码的线性回归方程,并估计贫困户在2020年能否脱贫(:国家规定2020年的脱贫标准:人均年纯收入不低于)

(参考公式:)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,在直角梯形中,,点上,且,将沿折起,使得平面平面(如图2).中点

(1)求证:

(2)求四棱锥的体积;

(3)在线段上是否存在点,使得平面?若存在,求的值;若不存在,请说明理由

查看答案和解析>>

科目: 来源: 题型:

【题目】四棱锥中,底面是矩形,平面,以为直径的球面交于点,交于点.则点到平面的距离为_

查看答案和解析>>

同步练习册答案