相关习题
 0  265524  265532  265538  265542  265548  265550  265554  265560  265562  265568  265574  265578  265580  265584  265590  265592  265598  265602  265604  265608  265610  265614  265616  265618  265619  265620  265622  265623  265624  265626  265628  265632  265634  265638  265640  265644  265650  265652  265658  265662  265664  265668  265674  265680  265682  265688  265692  265694  265700  265704  265710  265718  266669 

科目: 来源: 题型:

【题目】已知函数.

(1)求函数的图象在点处的切线方程;

(2)若上有解,求的取值范围;

(3)设是函数的导函数,是函数的导函数,若函数的零点为,则点恰好就是该函数的对称中心.试求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某单位40岁以上的女性职工共有60人,为了调查一下体重和年龄的关系,将这60人随机按1~60编号,用系统抽样的方法从中抽取10人,测量一下体重.

(1)若被抽出的号码其中一个为7,则最后被抽出的号码是多少?

(2)被抽取的10个人的体重(单位:),用茎叶图表示如图,求这10人体重的中位数与平均数;

(3)从这10个人中体重超过的人中随机抽取2人,参加健康指导培训,求体重为的人被抽到的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知.

1)求处的切线方程;

2)若,证明上单调递增;

3)设对任意成立求实数k的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在直三棱柱中,,且,点M在棱上,点NBC的中点,且满足.

1)证明:平面

2)若M的中点,求二面角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,其中,且的最小值为-2的图象的相邻两条对称轴之间的距离为的图象过点.

1)求函数的解析式和单调递增区间;

2)若函数的最大值和最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线的焦点为为抛物线上异于原点的任意一点,以为直径作圆,当直线的斜率为1时,.

(1)求抛物线的标准方程;

(2)过焦点的垂线与圆的一个交点为交抛物线于(点在点之间),记的面积为,求的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某省从2021年开始将全面推行新高考制度,新高考“”中的“2”要求考生从政治、化学、生物、地理四门中选两科,按照等级赋分计入高考成绩,等级赋分规则如下:从2021年夏季高考开始,高考政治、化学、生物、地理四门等级考试科目的考生原始成绩从高到低划分为五个等级,确定各等级人数所占比例分别为,等级考试科目成绩计入考生总成绩时,将等级内的考生原始成绩,依照等比例转换法分别转换到五个分数区间,得到考生的等级分,等级转换分满分为100分.具体转换分数区间如下表:

等级

比例

赋分区间

而等比例转换法是通过公式计算:

其中分别表示原始分区间的最低分和最高分,分别表示等级分区间的最低分和最高分,表示原始分,表示转换分,当原始分为时,等级分分别为

假设小南的化学考试成绩信息如下表:

考生科目

考试成绩

成绩等级

原始分区间

等级分区间

化学

75分

等级

设小南转换后的等级成绩为,根据公式得:

所以(四舍五入取整),小南最终化学成绩为77分.

已知某年级学生有100人选了化学,以半期考试成绩为原始成绩转换本年级的化学等级成绩,其中化学成绩获得等级的学生原始成绩统计如下表:

成绩

95

93

91

90

88

87

85

人数

1

2

3

2

3

2

2

(1)从化学成绩获得等级的学生中任取2名,求恰好有1名同学的等级成绩不小于96分的概率;

(2)从化学成绩获得等级的学生中任取5名,设5名学生中等级成绩不小于96分人数为,求的分布列和期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知双曲线的左、右焦点分别为,过右焦点作平行于一条渐近线的直线交双曲线于点,若的内切圆半径为,则双曲线的离心率为( )

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】某网店经营的一种商品进行进价是每件10元,根据一周的销售数据得出周销售量(件)与单价(元)之间的关系如下图所示,该网店与这种商品有关的周开支均为25元.

(1)根据周销售量图写出(件)与单价(元)之间的函数关系式;

(2)写出利润(元)与单价(元)之间的函数关系式;当该商品的销售价格为多少元时,周利润最大?并求出最大周利润.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数为自然对数的底数).

求曲线在点处的切线与坐标轴围成的三角形的面积

在区间上恒成立求实数的取值范围

查看答案和解析>>

同步练习册答案