科目: 来源: 题型:
【题目】某贫困村共有农户100户,均从事水果种植,平均每户年收入为1.8万元,在当地政府大力扶持和引导下,村委会决定2020年初抽出户(,)从事水果销售工作,经测算,剩下从事水果种植的农户平均每户年收入比上一年提高了,而从事水果销售的农户平均每户年收入为万元.
(1)为了使从事水果种植的农户三年后平均每户年收入不低于2.4万元,那么2020年初至少应抽出多少农户从事水果销售工作?
(2)若一年后,该村平均每户的年收入为(万元),问的最大值是否可以达到2.1万元?
查看答案和解析>>
科目: 来源: 题型:
【题目】商品的销售价格与销售量密切相关,为更精准地为商品确定最终售价,商家对商品A按以下单价进行试售,得到部分的数据如下:
单价(元) | |||||
销量(件) |
(1)求销量关于的线性回归方程;
(2)预计今后的销售中,销量与单价服从(1)中的线性回归方程,已知每件商品的成本是元,为了获得最大利润,商品的单价应定为多少元?(结果保留整数)
参考数据:,,)(参考公式:,)
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程:在直角坐标系中,曲线(为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的极坐标方程;
(2)已知点,直线的极坐标方程为,它与曲线的交点为,,与曲线的交点为,求的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】设椭圆,离心率,短轴,抛物线顶点在原点,以坐标轴为对称轴,焦点为,
(1)求椭圆和抛物线的方程;
(2)设坐标原点为,为抛物线上第一象限内的点,为椭圆是一点,且有,当线段的中点在轴上时,求直线的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知四边形为矩形, ,为的中点,将沿折起,得到四棱锥,设的中点为,在翻折过程中,得到如下有三个命题:
①平面,且的长度为定值;
②三棱锥的最大体积为;
③在翻折过程中,存在某个位置,使得.
其中正确命题的序号为__________.(写出所有正确结论的序号)
查看答案和解析>>
科目: 来源: 题型:
【题目】若数列同时满足条件:①存在互异的使得(为常数);
②当且时,对任意都有,则称数列为双底数列.
(1)判断以下数列是否为双底数列(只需写出结论不必证明);
①; ②; ③
(2)设,若数列是双底数列,求实数的值以及数列的前项和;
(3)设,是否存在整数,使得数列为双底数列?若存在,求出所有的的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com