相关习题
 0  265549  265557  265563  265567  265573  265575  265579  265585  265587  265593  265599  265603  265605  265609  265615  265617  265623  265627  265629  265633  265635  265639  265641  265643  265644  265645  265647  265648  265649  265651  265653  265657  265659  265663  265665  265669  265675  265677  265683  265687  265689  265693  265699  265705  265707  265713  265717  265719  265725  265729  265735  265743  266669 

科目: 来源: 题型:

【题目】某港口某天0时至24时的水深(米)随时间(时)变化曲线近似满足如下函数模型.若该港口在该天0时至24时内,有且只有3个时刻水深为3米,则该港口该天水最深的时刻不可能为(

A.16B.17C.18D.19

查看答案和解析>>

科目: 来源: 题型:

【题目】已知正方体,点是棱的中点,设直线,直线.对于下列两个命题:①过点有且只有一条直线都相交;②过点有且只有一条直线都成.以下判断正确的是(

A.①为真命题,②为真命题B.①为真命题,②为假命题

C.①为假命题,②为真命题D.①为假命题,②为假命题

查看答案和解析>>

科目: 来源: 题型:

【题目】近年来,人们的支付方式发生了巨大转变,使用移动支付购买商品已成为一部分人的消费习惯.某企业为了解该企业员工两种移动支付方式的使用情况,从全体员工中随机抽取了100人,统计了他们在某个月的消费支出情况.发现样本中两种支付方式都没有使用过的有5人;使用了两种方式支付的员工,支付金额和相应人数分布如下:

支付金额(元)

支付方式

大于2000

使用

18

29

23

使用

10

24

21

依据以上数据估算:若从该公司随机抽取1名员工,则该员工在该月两种支付方式都使用过的概率为______.

查看答案和解析>>

科目: 来源: 题型:

【题目】现定义:设是非零实常数,若对于任意的,都有,则称函数为“关于的偶型函数”

1)请以三角函数为例,写出一个“关于2的偶型函数”的解析式,并给予证明

2)设定义域为的“关于的偶型函数”在区间上单调递增,求证在区间上单调递减

3)设定义域为的“关于的偶型函数”是奇函数,若,请猜测的值,并用数学归纳法证明你的结论

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线Γ的准线方程为.焦点为.

1)求证:抛物线Γ上任意一点的坐标都满足方程:

2)请求出抛物线Γ的对称性和范围,并运用以上方程证明你的结论;

3)设垂直于轴的直线与抛物线交于两点,求线段的中点的轨迹方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】是等差数列,公差为,前项和为.

1)设,求的最大值.

2)设,数列的前项和为,且对任意的,都有,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】请解答以下问题,要求解决两个问题的方法不同.

1)如图1,要在一个半径为1米的半圆形铁板中截取一块面积最大的矩形,如何截取?并求出这个最大矩形的面积.

2)如图2,要在一个长半轴为2米,短半轴为1米的半个椭圆铁板中截取一块面积最大的矩形,如何截取?并求出这个最大矩形的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在正六棱锥中,已知底边为2,侧棱与底面所成角为.

1)求该六棱锥的体积

2)求证:

查看答案和解析>>

科目: 来源: 题型:

【题目】某生态农庄有一块如图所示的空地,其中半圆O的直径为300米,A为直径延长线上的点,米,B为半圆上任意一点,以AB为一边作等腰直角,其中BC为斜边.

;,求四边形OACB的面积;

现决定对四边形OACB区域地块进行开发,将区域开发成垂钓中心,预计每平方米获利10元,将区域开发成亲子采摘中心,预计每平方米获利20元,则当为多大时,垂钓中心和亲子采摘中心获利之和最大?

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系 中,曲线 的参数方程为 为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,直线 的极坐标方程为 .

1)求直线和曲线的普通方程;

2)已知点,且直线和曲线交于两点,求 的值

查看答案和解析>>

同步练习册答案