科目: 来源: 题型:
【题目】如图,在四边形中,,,四边形为矩形,且平面,.
(1)求证:平面;
(2)点在线段上运动,当点在什么位置时,平面与平面所成锐二面角最大,并求此时二面角的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,曲线(α为参数)经过伸缩变换得到曲线C2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系.
(1)求C2的普通方程;
(2)设曲线C3的极坐标方程为,且曲线C3与曲线C2相交于M,N两点,点P(1,0),求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知平面内一个动点M到定点F(3,0)的距离和它到定直线l:x=6的距离之比是常数.
(1)求动点M的轨迹T的方程;
(2)若直线l:x+y-3=0与轨迹T交于A,B两点,且线段AB的垂直平分线与T交于C,D两点,试问A,B,C,D是否在同一个圆上?若是,求出该圆的方程;若不是,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】下表列出了10名5至8岁儿童的体重x(单位kg)(这是容易测得的)和体积y(单位dm3)(这是难以测得的),绘制散点图发现,可用线性回归模型拟合y与x的关系:
体重x | 17.00 10.50 13.80 15.70 11.90 10.20 15.00 17.80 16.00 12.10 |
体积y | 16. 70 10.40 13.50 15.70 11.60 10.00 14.50 17.50 15.40 11.70 |
(1)求y关于x的线性回归方程(系数精确到0.01);
(2)某5岁儿童的体重为13.00kg,估测此儿童的体积.
附注:参考数据:,,,,
,,137×14=1918.00.
参考公式:回归方程中斜率和截距的最小二乘法估计公式分别为:,.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列中,,又数列满足:.
(1)求证:数列是等比数列;
(2)若数列是单调递增数列,求实数的取值范围;
(3)若数列的各项皆为正数,,设是数列的前项和,问:是否存在整数,使得数列是单调递减数列?若存在,求出整数;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数,其中为常数.
(1)当时,解不等式;
(2)已知是以2为周期的偶函数,且当时,有.若,且,求函数的反函数;
(3)若在上存在个不同的点,,使得,求实数的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列各项均为正数,为其前项的和,且成等差数列.
(1)写出、、的值,并猜想数列的通项公式;
(2)证明(1)中的猜想;
(3)设,为数列的前项和.若对于任意,都有,求实数的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com