科目: 来源: 题型:
【题目】在平面直角坐标系中,已知曲线的参数方程为(为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)设点分别为曲线与曲线上的任意一点,求的最大值;
(2)设直线(为参数)与曲线交于两点,且,求直线的普通方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】峰谷电是目前在城市居民当中开展的一种电价类别.它是将一天24小时划分成两个时间段,把8:00—22:00共14小时称为峰段,执行峰电价,即电价上调;22:00—次日8:00共10个小时称为谷段,执行谷电价,即电价下调.为了进一步了解民众对峰谷电价的使用情况,从某市一小区随机抽取了50 户住户进行夏季用电情况调查,各户月平均用电量以,,,,,(单位:度)分组的频率分布直方图如下图:
若将小区月平均用电量不低于700度的住户称为“大用户”,月平均用电量低于700度的住户称为“一般用户”.其中,使用峰谷电价的户数如下表:
月平均用电量(度) | ||||||
使用峰谷电价的户数 | 3 | 9 | 13 | 7 | 2 | 1 |
(1)估计所抽取的 50户的月均用电量的众数和平均数(同一组中的数据用该组区间的中点值作代表);
(2)()将“一般用户”和“大用户”的户数填入下面的列联表:
一般用户 | 大用户 | |
使用峰谷电价的用户 | ||
不使用峰谷电价的用户 |
()根据()中的列联表,能否有的把握认为 “用电量的高低”与“使用峰谷电价”有关?
0.025 | 0.010 | 0.001 | |
5.024 | 6.635 | 10.828 |
附:,
查看答案和解析>>
科目: 来源: 题型:
【题目】设椭圆的左焦点为,离心率为,为圆的圆心.
(1)求椭圆的方程;
(2)已知过椭圆右焦点的直线交椭圆于两点,过且与垂直的直线与圆交于两点,求四边形面积的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知曲线C的极坐标方程是ρ=6sinθ,建立以极点为坐标原点,极轴为x轴正半轴的平面直角坐标系.直线l的参数方程是,(t为参数).
(1)求曲线C的直角坐标方程;
(2)若直线l与曲线C相交于A,B两点,且|AB|=,求直线的斜率k.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线,的焦点为,过点的直线的斜率为,与抛物线交于,两点,抛物线在点,处的切线分别为,,两条切线的交点为.
(1)证明:;
(2)若的外接圆与抛物线有四个不同的交点,求直线的斜率的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=AD=2.
(1)求该四棱锥P-ABCD的表面积和体积;
(2)求该四棱锥P-ABCD内切球的表面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】根据阅兵领导小组办公室介绍,2019年国庆70周年阅兵有59个方(梯)队和联合军乐团,总规模约1.5万人,是近几次阅兵中规模最大的一次.其中,徒步方队15个.为了保证阅兵式时队列保持整齐,各个方队对受阅队员的身高也有着非常严格的限制,太高或太矮都不行.徒步方队队员,男性身高普遍在175cm至185cm之间;女性身高普遍在163cm至175cm之间,这是常规标准.要求最为严格的三军仪仗队,其队员的身高一般都在184cm至190cm之间.经过随机调查某个阅兵阵营中女子100人,得到她们身高的直方图,如图,记C为事件:“某一阅兵女子身高不低于169cm”,根据直方图得到P(C)的估计值为0.5.
(1)求直方图中a,b的值;
(2)估计这个阵营女子身高的平均值 (同一组中的数据用该组区间的中点值为代表)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,且AB=1,BC=2, ∠ABC=60°,PA⊥平面ABCD,AE⊥PC于E,
下列四个结论:①AB⊥AC;②AB⊥平面PAC;③PC⊥平面ABE;④BE⊥PC.正确的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目: 来源: 题型:
【题目】某单位共有老年人120人,中年人360人,青年人n人,为调查身体健康状况,需要从中抽取一个容量为m的样本,用分层抽样的方法进行抽样调查,样本中的中年人为6人,则n和m的值不可以是下列四个选项中的哪组( )
A.n=360,m=14B.n=420,m=15C.n=540,m=18D.n=660,m=19
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com