科目: 来源: 题型:
【题目】在复平面内,给出以下四个说法:
①实轴上的点表示的数均为实数;
②虚轴上的点表示的数均为纯虚数;
③互为共轭复数的两个复数的实部相等,虚部互为相反数;
④已知复数满足,则在复平面内所对应的点位于第四象限.
其中说法正确的个数为( )
A.B.C.D.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知极点与坐标原点重合,极轴与轴非负半轴重合,是曲线上任一点满足,设点的轨迹为.
(1)求曲线的平面直角坐标方程;
(2)将曲线向右平移个单位后得到曲线,设曲线与直线(为参数)相交于、两点,记点,求.
查看答案和解析>>
科目: 来源: 题型:
【题目】设椭圆的一个顶点与抛物线的焦点重合,、分别是椭圆的左、右焦点,其离心率椭圆右焦点的直线与椭圆交于、两点.
(1)求椭圆的方程;
(2)是否存在直线,使得?若存在,求出直线的方程;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某市房管局为了了解该市市民年月至年月期间买二手房情况,首先随机抽样其中名购房者,并对其购房面积(单位:平方米,)进行了一次调查统计,制成了如图所示的频率分布直方图,接着调查了该市年月至年月期间当月在售二手房均价(单位:万元/平方米),制成了如图所示的散点图(图中月份代码分别对应年月至年月).
(1)试估计该市市民的购房面积的中位数;
(2)现采用分层抽样的方法从购房面积位于的位市民中随机抽取人,再从这人中随机抽取人,求这人的购房面积恰好有一人在的概率;
(3)根据散点图选择和两个模型进行拟合,经过数据处理得到两个回归方程,分别为和,并得到一些统计量的值如下表所示:
0.000591 | 0.000164 | |
0.006050 |
请利用相关指数判断哪个模型的拟合效果更好,并用拟合效果更好的模型预测出年月份的二手房购房均价(精确到)
(参考数据),,,,,,
(参考公式)
查看答案和解析>>
科目: 来源: 题型:
【题目】设为数列前项的和,,数列的通项公式.
(1)求数列的通项公式;
(2)若,则称为数列与的公共项,将数列与的公共项,按它们在原数列中的先后顺序排成一个新数列,求的值;
(3)是否存在正整数、、使得成立,若存在,求出、、;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】对于定义在上的函数,若函数满足:①在区间上单调递减;②存在常数,使其值域为,则称函数为的“渐近函数”.
(1)设,若在上有解,求实数取值范围;
(2)证明:函数是函数,的渐近函数,并求此时实数的值;
(3)若函数,,,证明:当时,不是的渐近函数.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知在Rt△ABC中,,,,它的内接正方形DEFG的一边EF在斜边BA上,D、G分别在边BC、CA上,设△ABC的面积为,正方形DEFG的面积为.
(1)试用、分别表示和;
(2)设,求的最大值,并求出此时的.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com