相关习题
 0  265564  265572  265578  265582  265588  265590  265594  265600  265602  265608  265614  265618  265620  265624  265630  265632  265638  265642  265644  265648  265650  265654  265656  265658  265659  265660  265662  265663  265664  265666  265668  265672  265674  265678  265680  265684  265690  265692  265698  265702  265704  265708  265714  265720  265722  265728  265732  265734  265740  265744  265750  265758  266669 

科目: 来源: 题型:

【题目】已知函数在区间上的最大值为,最小值为,记

1)求实数的值;

2)若不等式对任意恒成立,求实数的范围;

3)对于定义在上的函数,设,用任意划分成个小区间,其中,若存在一个常数,使得不等式恒成立,则称函数为在上的有界变差函数,试证明函数是在上的有界变差函数,并求出的最小值;

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆以原点为中心,左焦点的坐标是,长轴长是短轴长的倍,直线与椭圆交于点,且都在轴上方,满足

1)求椭圆的标准方程;

2)对于动直线,是否存在一个定点,无论如何变化,直线总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由;

查看答案和解析>>

科目: 来源: 题型:

【题目】曲线是平面内到直线和直线的距离之积等于常数)的点的轨迹,下列四个结论:

①曲线过点

②曲线关于点成中心对称;

③若点在曲线上,点分别在直线上,则不小于

④设为曲线上任意一点,则点关于直线,点及直线对称的点分别为,则四边形的面积为定值

其中,所有正确结论的序号是________

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数(a为常数与x轴有唯一的公共点A

(Ⅰ)求函数的单调区间;

(Ⅱ)曲线在点A处的切线斜率为,若存在不相等的正实数,满足,证明:

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,已知直线的参数方程为.以坐标原点为极点,轴的非负半轴为极轴,取相同的长度单位建立极坐标系,曲线的极坐标方程为

1)求直线的普通方程和曲线的直角坐标方程;

2)若曲线上的点到直线l的最大距离为,求实数的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数为自然对数的底数).

时,求曲线在点处的切线方程;

讨论的单调性;

时,证明.

查看答案和解析>>

科目: 来源: 题型:

【题目】设椭圆的左、右焦点分别为,点在椭圆上,为原点.

,求椭圆的离心率;

若椭圆的右顶点为,短轴长为2,且满足为椭圆的离心率).

求椭圆的方程;

设直线与椭圆相交于两点,若的面积为1,求实数的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱柱中,分别为的中点,.

求证:平面

求二面角的正弦值;

已知为棱上的点,若,求线段的长度.

查看答案和解析>>

科目: 来源: 题型:

【题目】每年的124日为我国“法制宣传日”.天津市某高中团委在2019124日开展了以“学法、遵法、守法”为主题的学习活动.已知该学校高一、高二、高三的学生人数分别是480人、360人、360.为检查该学校组织学生学习的效果,现采用分层抽样的方法从该校全体学生中选取10名学生进行问卷测试.具体要求:每位被选中的学生要从10个有关法律、法规的问题中随机抽出4个问题进行作答,所抽取的4个问题全部答对的学生将在全校给予表彰.

求各个年级应选取的学生人数;

若从被选取的10名学生中任选3人,求这3名学生分别来自三个年级的概率;

若被选取的10人中的某学生能答对10道题中的7道题,另外3道题回答不对,记表示该名学生答对问题的个数,求随机变量的分布列及数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆,圆心为坐标原点的单位圆OC的内部,且与C有且仅有两个公共点,直线C只有一个公共点.

1)求C的标准方程;

2)设不垂直于坐标轴的动直线l过椭圆C的左焦点F,直线lC交于AB两点,且弦AB的中垂线交x轴于点P,求的值.

查看答案和解析>>

同步练习册答案