科目: 来源: 题型:
【题目】根据某省的高考改革方案,考生应在3门理科学科(物理、化学、生物)和3门文科学科(历史、政治、地理)的6门学科中选择3门学科参加考试.根据以往统计资料,1位同学选择生物的概率为0.5,选择物理但不选择生物的概率为0.2,考生选择各门学科是相互独立的.
(1)求1位考生至少选择生物、物理两门学科中的1门的概率;
(2)某校高二段400名学生中,选择生物但不选择物理的人数为140,求1位考生同时选择生物、物理两门学科的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系上,有一点列,设点的坐标(),其中. 记,,且满足().
(1)已知点,点满足,求的坐标;
(2)已知点,(),且()是递增数列,点在直线:上,求;
(3)若点的坐标为,,求的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,椭圆的左、右顶点分别为A、B,双曲线以A、B为顶点,焦距为,点P是上在第一象限内的动点,直线AP与椭圆相交于另一点Q,线段AQ的中点为M,记直线AP的斜率为为坐标原点.
(1)求双曲线的方程;
(2)求点M的纵坐标的取值范围;
(3)是否存在定直线使得直线BP与直线OM关于直线对称?若存在,求直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,沿河有A、B两城镇,它们相距千米.以前,两城镇的污水直接排入河里,现为保护环境,污水需经处理才能排放.两城镇可以单独建污水处理厂,或者联合建污水处理厂(在两城镇之间或其中一城镇建厂,用管道将污水从各城镇向污水处理厂输送).依据经验公式,建厂的费用为(万元),表示污水流量;铺设管道的费用(包括管道费)(万元),表示输送污水管道的长度(千米).已知城镇A和城镇B的污水流量分别为、,、两城镇连接污水处理厂的管道总长为千米.假定:经管道输送的污水流量不发生改变,污水经处理后直接排入河中.请解答下列问题(结果精确到):
(1)若在城镇A和城镇B单独建厂,共需多少总费用?
(2)考虑联合建厂可能节约总投资,设城镇A到拟建厂的距离为千米,求联合建厂的总费用与的函数关系式,并求的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数,如果存在给定的实数对,使得恒成立,则称为“函数”;
(1)判断函数,是否是“函数”;
(2)若是一个“函数”,求出所有满足条件的有序实数对;
(3)若定义域为的函数是“函数”,且存在满足条件的有序实数对和,当时,的值域为,求当时的值域;
查看答案和解析>>
科目: 来源: 题型:
【题目】某环境保护部门对某处的环境状况用“污染指数”来监测,据测定,该处的“污染指数”与附近污染源的强度和距离之比成正比,比例系数为常数,现已知相距的两家化工厂(污染源)的污染强度分别为1和,它们连线段上任意一点处的污染指数等于两化工厂对该处的污染指数之和,设;
(1)试将表示为的函数,指出其定义域;
(2)当时,处的“污染指数”最小,试求化工厂的污染强度的值;
查看答案和解析>>
科目: 来源: 题型:
【题目】在集合的子集中选出4个不同的子集,需同时满足以下两个条件:
(1),都要选出;(2)对选出的任意两个子集和,必有或;
那么具有_______种不同的选法;
查看答案和解析>>
科目: 来源: 题型:
【题目】某花圃为提高某品种花苗质量,开展技术创新活动,在,实验地分别用甲、乙方法培育该品种花苗.为观测其生长情况,分别在,试验地随机抽选各株,对每株进行综合评分(评分的高低反映花苗品质的高低),将每株所得的综合评分制成如图所示的频率分布直方图:
(1)求图中的值,并求综合评分的中位数;
(2)记综合评分为及以上的花苗为优质花苗.填写下面的列联表,并判断是否有的把握认为优质花苗与培育方法有关.
优质花苗 | 非优质花苗 | 合计 | |
甲培育法 | |||
乙培育法 | |||
合计 |
附:下面的临界值表仅供参考.
(参考公式:,其中.)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com