科目: 来源: 题型:
【题目】空气质量指数是反映空气质量状况的指数,指数值越小,表明空气质量越好,其对应关系如表:
指数值 | ||||||
空气质量 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
如图是某市10月1日—20日指数变化趋势:
下列叙述正确的是( )
A.该市10月的前半个月的空气质量越来越好
B.这20天中的中度污染及以上的天数占
C.这20天中指数值的中位数略高于100
D.总体来说,该市10月上旬的空气质量比中旬的空气质量差
查看答案和解析>>
科目: 来源: 题型:
【题目】以直角坐标系的原点为极点,x轴的非负半轴为极轴建立极坐标系,并在两种坐标系中取相同的长度单位已知直线l的参数方程为(为参数,),抛物线C的普通方程为.
(1)求抛物线C的准线的极坐标方程;
(2)设直线l与抛物线C相交于A,B两点,求的最小值及此时的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示的几何体中,正方形所在平面垂直于平面,四边形为平行四边形,G为上一点,且平面,.
(1)求证:平面平面;
(2)当三棱锥体积最大时,求平面与平面所成二面角的正弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某城市为鼓励人们绿色出行,乘坐地铁,地铁公司决定按照乘客经过地铁站的数量实施分段优惠政策,不超过站的地铁票价如下表:
乘坐站数 | |||
票价(元) |
现有甲、乙两位乘客同时从起点乘坐同一辆地铁,已知他们乘坐地铁都不超过站.甲、乙乘坐不超过站的概率分别为, ;甲、乙乘坐超过站的概率分别为, .
(1)求甲、乙两人付费相同的概率;
(2)设甲、乙两人所付费用之和为随机变量,求的分布列和数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】空气质量指数是反映空气质量状况的指数,指数值越小,表明空气质量越好,其对应关系如表:
指数值 | ||||||
空气质量 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
如图是某市10月1日—20日指数变化趋势:
下列叙述正确的是( )
A.该市10月的前半个月的空气质量越来越好
B.这20天中的中度污染及以上的天数占
C.这20天中指数值的中位数略高于100
D.总体来说,该市10月上旬的空气质量比中旬的空气质量差
查看答案和解析>>
科目: 来源: 题型:
【题目】对于双曲线,定义为其伴随曲线,记双曲线的左、右顶点为、.
(1)当时,记双曲线的半焦距为,其伴随椭圆的半焦距为,若,求双曲线的渐近线方程.
(2)若双曲线的方程为,弦轴,记直线与直线的交点为,求其动点的轨迹方程.
(3)过双曲线的左焦点,且斜率为的直线与双曲线交于两点,求证:对任意的,在伴随曲线上总存在点,使得.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数的图像过点和.
(1)求函数的解析式;
(2)若在上有解,求的最小值;
(3)记,,是否存在正数,使得对一切均成立?若存在,求出的最大值;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某企业年的纯利润为万元,因设备老化等原因,企业的生产能力将逐年下降,若不进行技术改造,预测从今年(年)起每年比上一年纯利润减少万元,今年初该企业一次性投入资金万元进行技术改造,预计在未扣除技术改造资金的情况下,第年(今年为第一年)的利润为万元(为正整数).
(1)设从今年起的前年,若该企业不进行技术改造的累计纯利润为万元,进行技术改造后的累计纯利润为万元(须扣除技术改造资金),求,的表达式;
(2)以上述预测,从今年起该企业至少经过多少年后,进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润?
查看答案和解析>>
科目: 来源: 题型:
【题目】记矩阵中的第行第列上的元素为,现对矩阵中的元素按如下算法所示的步骤作变动(直到不能变动为止):若,则,,,若,则不变动,这样得到矩阵B,再对矩阵B中的元素按如下算法所示的步骤作变动(直到不能变动为止):若,则,,;若,则不变动,这样得到矩阵,则________;
查看答案和解析>>
科目: 来源: 题型:
【题目】对于函数,若存在区间,使得,则称函数为“可等域函数”,区间为函数的一个“可等域区间”.给出下列4个函数:
①;②; ③; ④.
其中存在唯一“可等域区间”的“可等域函数”为( )
(A)①②③ (B)②③ (C)①③ (D)②③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com