相关习题
 0  265685  265693  265699  265703  265709  265711  265715  265721  265723  265729  265735  265739  265741  265745  265751  265753  265759  265763  265765  265769  265771  265775  265777  265779  265780  265781  265783  265784  265785  265787  265789  265793  265795  265799  265801  265805  265811  265813  265819  265823  265825  265829  265835  265841  265843  265849  265853  265855  265861  265865  265871  265879  266669 

科目: 来源: 题型:

【题目】

对定义在区间上的函数,若存在闭区间和常数,使得对任意的都有,且对任意的都有恒成立,则称函数为区间上的“U函数。

1)求证:函数上的“U函数;

2)设是(1)中的“U函数,若不等式对一切的恒成立,求实数的取值范围;

3)若函数是区间上的“U函数,求实数的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】数列的前项和为且满足为常数,).

1)求

2)若数列是等比数列,求实数的值;

3)是否存在实数,使得数列满足:可以从中取出无限多项并按原来的先后次序排成一个等差数列?若存在,求出所有满足条件的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】分形几何学是数学家伯努瓦曼德尔布罗在20世纪70年代创立的一门新的数学学科.它的创立为解决传统科学众多领域的难题提供了全新的思路.按照如图1所示的分形规律可得如图2所示的一个树形图:

易知第三行有白圈5个,黑圈4个.我们采用坐标来表示各行中的白圈、黑圈的个数.比如第一行记为,第二行记为,第三行记为.照此规律,第行中的白圈、黑圈的坐标,则________

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数满足,对于任意都有,且,另

1)求函数的表达式;

2)当时,求函数的单调区间;

3)当时,判断函数在区间上的零点个数,并给予证明.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知数列是各项均不为0的等差数列,公差为为其前项和,且满足.数列满足为数列的前项和.

1)求

2)求

3)若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知几何体如图所示,其中两两互相垂直且,且.

1)求此几何体的体积;

2)求异面直线所成角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

1)当时,求的单调区间;

2)当,讨论的零点个数;

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的离心率为,过椭圆E的左焦点且与x轴垂直的直线与椭圆E相交于的PQ两点,O为坐标原点,的面积为.

1)求椭圆E的方程;

2)点MN为椭圆E上不同两点,若,求证:的面积为定值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知四棱锥,底面为菱形, 平面EF分别是的中点.

1)求证:

2)若直线与平面所成角的余弦值为,求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,点是曲线上的任意一点,动点满足

1)求点的轨迹方程;

2)经过点的动直线与点的轨迹方程交于两点,在轴上是否存在定点(异于点),使得?若存在,求出的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案